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We present a diffusion Monte Carlo simulation of metastable superfluid 4He at zero tem­
perature and pressures beyond freezing (~ 25 bar) up to 275 bar. The equation of state 
of liquid 4He is extended to the overpressurized regime, where the pressure dependence 
of the static structure factor and the condensate fraction is obtained. Along this large 
pressure range, excited-state energy corresponding to the roton has been determined 
using the release-node technique. Our results show that both the roton energies and 
the condensate fraction decrease with increasing pressure but do not become zero. We 
compare our calculations to recent experimental data in overpressurized regime. 

Keywords: 4He; excitations; Monte Carlo. 

1. Introduction 

Fluids in metastable phases, both below the saturated vapor pressure and above the 
freezing point, present a research topic of fundamental interest for both experiment 
and theory.1 The extreme purity of liquid helium at very low temperatures allows 
researchers to avoid nucleation on impurities and walls, and thus makes it the best 
suited system for the study of homogeneous nucleation, an intrinsic property of the 
liquid. 

The negative pressure regime has been extensively studied by Caupin, Balibar 
and collaborators using an acoustic technique, in which high intensity ultrasound 
bursts are focused in bulk helium and the possible nucleation of bubbles or crystals is 
studied by shining laser light through the acoustic focal region.2,3 In liquid 4He they 
have measured a negative pressure only 0.2 bar above the spinodal point of -9.6 K 
predicted by microscopic theory.4'5 By slightly modifying their experimental setup, 
so as to avoid nucleation on the walls, the same group has recently succeeded in 
pressurizing the small quantities of liquid 4He up to 160 bar at temperatures 0.05 K 
< T < 1 K.6 This is the highest pressure ever realized in liquid metastable 4He and 

5154 

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
6.

20
:5

15
4-

51
63

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 S
O

U
T

H
 W

A
L

E
S 

on
 0

2/
10

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.w.n*e..ntm�.e.m
http://leandraQpmfst.hr


Overpressurized Liquid 4He at Zero Temperature 5155 

is much larger than the liquid-solid equilibrium pressure, which at T = 0 K is 25.3 
bar. All along this large increase of the liquid pressure beyond the freezing point no 
solidification was observed. It is not clear if a limit exist to how far one can pressurize 
liquid helium. Namely, there is a significant difference in the nature of the two 
metastable phases. At negative pressure, there exists an end point (spinodal point) 
where the speed of sound becomes zero. Since at this point compressibility becomes 
infinite it is thermodynamically forbidden to cross it maintaining a homogeneous 
liquid phase. So, below that pressure the liquid brakes into droplets. Such type of 
an end point does not exist on the overpressurized side. However, as the excitation 
energy of rotons decreases with pressure (a fact well-known from the stable phase), 
Schneider and Enz7 suggested that the pressurized phase has also an end point 
corresponding to the pressure where the excitation energy of the roton might vanish. 
On the other hand, Jacksonet al.8 and Halinen et al.,9 find another instability that 
could cause the liquid-solid transition in 4He which involves a soft mode having 
6-fold symmetry in the two-body correlations. 

It is also interesting to find out what the nature of metastable liquid 4He at 
these high pressures is; superfluid or liquid. Recent experiments have shown that by 
immersing liquid 4He in different porous media one can create metastable phases, 
at both negative pressures and pressures above the stable phase, that have a long 
enough lifetime to allow study by neutron scattering.10 'n In this way information 
on the phonon-roton excitations has been obtained for negative pressures up to -5 
bar10 and overpressures up to ~40 bar.11 The results of the latter experiment by 
Pearce et al11 show the roton excitation falling with pressure in the overpressurized 
regime, between 25 and 38.5 bar, while no roton is observed in the solid phase. At 
the liquid-solid transition, the roton energy is still finite, which means that 4He 
is superfluid when it crystallizes. This result seems to be in disagreement with a 
recent experimental work by Yamamoto et al.12 who reported superfluid transition 
temperature approaching Tc = 0 at a pressure P ~ 35 bar in a porous material, 
which implies the existence of a quantum phase transition from superfluid to normal 
liquid at zero temperature. It is possible that the differences observed in the two 
experiments are a consequence of the different pore diameters used (44 A in Ref. 
11 and 25 A in Ref. 12), but additional work is needed to confirm this argument. 
In the direction of quantum phase transition, Nozieres13 has predicted recently that 
the condensate fraction could vanish at a certain pressure, and therefore a normal 
liquid before solidification would be possible. 

Contrary to the negative pressure region where theoretical knowledge is rather 
complete,1 the overpressurized liquid has remained nearly unexplored, especially at 
the level of microscopic treatment. Recently, we have applied diffusion Monte Carlo 
(DMC) method to the overpressurized phase up to P ~ 275 bar.14,15 We consid­
ered it probably the best suited way to deal with this metastable regime because 
the physical phase of the system is controlled by the trial wave function used for im­
portance sampling. Our results, in particular those for condensate fraction and the 
excitation energy of the roton, show that metastable helium remains superfluid all 
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along the large pressure increase from the solidification up to the highest pressures 
studied. In this paper, we will first present our calculations of the ground state and 
then proceed to excitations corresponding to the roton. 

2. Ground State 

The DMC method is nowadays a well-known tool in the of study quantum fluids 
and solids at zero temperature. For this reason we shall only give here the basic 
expressions. This fully microscopic approach solves stochastically the imaginary-
time Schrodinger equation. 

- h ™ ^ = (H - EtWR,t) , (1) 

where Et is a constant acting as a reference energy, R = ( n , . . . ,T*JV) is a walker in 
Monte Carlo terminology and the AT-particle Hamiltonian is given by expression 

^ - ^ E ^ + E^-). (2) 
j=l i<j 

The He-He interaction V(r) corresponds to the HFD-B(HE) Aziz potential.18 The 
usual practice is to introduce the trial wave function ip(R) for importance sampling 
and to rewrite the Schrodinger equation in terms of $(# ,£) = ^(R,t)rp(R). In the 
limit t -> oo only the lowest energy eigenfunction, not orthogonal to ip(R), survives. 
For the ground state of bosonic system, such as liquid 4He, the DMC gives exact 
results apart from the statistical errors. 

The trial wave function for the simulation of the liquid in its ground state is of 
Jastrow type. As in the previous calculations in the stable domain,16 we have used 
a model proposed by Reatto17 which includes nearly optimal short and medium 
range two-body correlations 

)'])• (3) 

This model has variational parameters L, A, A and 6, which were optimized in a 
variational Monte Carlo calculation.14 

In order to compare our results with the behavior of solid 4He, we have also 
carried out DMC simulations of the crystalline hep phase. In this case, the trial 
wave function is given by a Nosanow-Jastrow model 

N 

i/jNj(R) = rPj(R)l[h(riI), (4) 
i 

where h{r) is a gaussian function linking every particle i to a fixed lattice point rj. 
We have assumed periodic boundary conditions in all the simulations. Since 

the densities in this study are relatively large it has been necessary to carry out 
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a detailed analysis of the parameters influencing the simulation in order to elimi­
nate possible bias. The most important check concerns residual size effects. This is 
achieved by summing proper tail corrections to the partial components of the en­
ergy (potential and kinetic) and by calculating the energies using different number 
of particles N. We have found this number increasing with density, from N = 150 
near freezing to N = 250 at the highest density. In addition, the dependence on 
the mean population of walkers and the time step in the employed second-order 
algorithm16 has also been carefully determined to eliminate any possible systematic 
error. 

The complete equation of state, from the spinodal point up to the highest den­
sities is plotted in Fig. 1. We have found that DMC energies are accurately param-

4 

Q 0 

I 
-4 

-8 
0.35 0.4 0.45 0.5 0.55 0.6 

P(<T3) 

Fig. 1. Energy per particle of liquid 4He from the equilibrium density up to the highest density 
calculated, 0.6 a - 3 , (solid circles). The solid line corresponds to the fit to the DMC energies using 
Eq. (5), and the open circles are experimental data in the stable regime from Ref. 19. DMC results 
for the solid phase are shown as solid squares and compared with experimental data from Ref. 20 
(open squares). The error bars of our data are smaller than the size of the symbols. 

eterized, from the spinodal point up to the highest densities in our calculation, by 
the analytical form14 

e(p) = e0 + e1 (p/pc - 1) (1 - (p/pc - 1)) + b3(p/pc - l ) 3 + b4(p/pc - l ) 4 , (5) 

with e = E/N, and pc = 0.264 a~3 (a = 2.556 A) the spinodal density. The rest of 
parameters in Eq. (5) are e0 = -6.3884(40) K, ex = -4.274(31) K, b3 = 1.532(12) 
K, and 64 = 1.433(24) K, the figures in parenthesis being the statistical errors.14 Fig. 
1 also shows DMC results for the energies of the solid phase, calculated using the 
Nosanow-Jastrow trial wave function and an hep lattice. In all the density regime 
studied, the system is artificially maintained in a homogeneous liquid phase. The 
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comparison between the liquid and solid phase simulations shows clearly that DMC 
is effectively able to study the overpressurized liquid phase in spite of not being the 
ground-state (minimum energy) configuration, which obviously corresponds to the 
solid phase beyond the freezing point. This can be achieved by the DMC method 
because the physical phase is implicitly contained in the importance sampling trial 
wave function and it is not changed along the simulation. DMC should arrive at the 
true ground state (solid) in the limit of infinite simulation time. Since achievement 
of this limit requires breaking of symmetry imposed by the importance sampling 
wave function, it is not observed in the usual time schedules. In particular, in the 
course of our simulations we have observed no signal of freezing and therefore the 
results obtained correspond unambiguously to the metastable liquid phase. 

350 

250 

l a 
ST 

150 

50 

0.37 0.42 0.47 0.52 0.57 0.62 

P(a -3) 

Fig. 2. Pressure as a function of the density. The solid lines stand for the DMC results obtained 
from the equations of state of the liquid and solid phases shown in Fig. 1. The dashed line is the 
extrapolation from experimental data ; 6 , 2 1 the symbols correspond to experimental data for the 
liquid19 and solid phases.20 

Using the equation of state (5), we have obtained the pressure from its thermo­
dynamic definition 

P(p)=p2(de/dp). (6) 

The results, shown in Fig. 2, reproduce accurately the experimental data19 of the 
pressure as the function of the density in the stable regime and predict a pressure 
P ~ 275 bar at the highest density evaluated, p = 0.6 <r~3. They are compared in 
the same figure with the analytic form suggested in Ref. 6, adjusted to Abraham's 
experimental data.21 Below the freezing point, both curves agree but they give 
significantly different values at higher densities; the difference amounts to ~ 100 
bar at p = 0.6 a"3. As a matter of comparison, the pressure of the solid phase, 
derived from the DMC equation of state is also shown in Fig. 1. Similar discrepancies 
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between our results and the extrapolations of the experimental data from the stable 
region appear at high pressure results of the speed of sound and amount to almost 
200 m/s at the highest density.14 

1.6 

1.2 

™ 0.8 

0.4 

0 
0 1 2 3 4 5 6 

q (A -1) 

Fig. 3. Static structure function of the liquid phase for different densities. From bottom to top 
in the height of the main peak, the results correspond to densities 0.365, 0.438, 0.490, 0.540, and 
0.6 a " 3 . 

An important quantity in the study of quantum liquids is the static structure 
factor S(q) = (pqp-q)/N, with pq = ^2i=1 etqTi. Our results are reported in Fig. 
3, for densities ranging from the equilibrium up to the highest densities studied. 
The results show the expected behavior: when p increases, the strength of the main 
peak increases and moves to higher momenta in a monotonic way. At low mo­
menta, the slope of S{q) decreases with the density, following the limiting behavior 
l i m ^ o S{q) = hq/(2mc) driven by the speed of sound c. A characteristic feature of 
a solid phase is the presence of high-intensity peaks of the static structure function 
in the reciprocal lattice sites. Following the overpressurized liquid phase, we have 
not observed this feature which confirms the liquid nature of the system. According 
to Schneider and Enz, the instability of the liquid against the solid ought to be 
accompanied by the blowup of the main peak of S(q).7 Here, we see a rather slow 
growth of the main peak with pressure which indicates that the predicted instability 
is located much higher in pressure. 

A characteristic signature of bulk superfiuid 4 He is a finite value of its condensate 
fraction, i.e., the fraction of particles occupying the zero-momentum state. As usual 
in a homogeneous system, we have extracted the condensate fraction no from the 
long range behavior of the one-body density matrix, l im^oo p{r) = no- To this end, 
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o 
c 

0.04 

0.03 

0.02 -

0.01 -

50 100 150 200 250 300 

P(bar) 

Fig. 4. Condensate fraction of liquid 4He in the overpressurized regime. The line is an exponential 
fit to the DMC results. 

p{r) is sampled by means of the quotient 

'ip(n,...,ri + r,...,rN) (7) 
ip(ri,...,ri,...,rN) / ' 

evaluated in the configuration space, over a set of random displacements r of par­
ticle i. The results obtained for no, from the melting pressure up to nearly 300 bar, 
are plotted in Fig. 4. The line on top of the data corresponds to an exponential fit 
which reproduces quite accurately our DMC results. As one can see in the figure, 
no decreases quite fast until P = 100 bar and then the slope decreases, approaching 
a value n0 ^ 0.005 at the highest density. With the same procedure, we obtained16 

no = 0.084(1) at the equilibrium density po = 0.365 cr~3, value which is compat­
ible with PIMC estimations at low temperature22 (0.069(10) at T = 1.18 K and 
0.087(10) at T — 1.54 K). An exponential decay of no with density up to pressures 
« 80 bar was also obtained using the variational path integral method (VPI) in Ref. 
23. VPI method, using a similar estimator as in PIMC, gives n0=0.069(5) at p0-

3. Excited State 

It has been experimentally demonstrated that the energy of the roton excitations 
reduces with rising pressure.11'24 The vanishing of the roton energy at some pres­
sure has been proposed as the intrinsic instability limit of the liquid against a solid. 
This hypothesis led us to carry out a DMC released-node (RN) calculation of the 
roton energy beyond the freezing point. The same methodology was used in the 
past in a DMC calculation of the phonon-roton spectrum at equilibrium and freez­
ing densities26 arriving at an accurate description of the experimental data. The 
simulation of the roton is more involved than the simulation of the ground state 
because of the sign problem associated with the excited state wave function. As 
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a trial wave function for importance sampling we have taken an eigenstate of the 
total momentum operator which incorporates backflow correlations, as originally 
proposed by Feynman and Cohen,25

 IPBF(R) — ipe(R)ipj(R), where 

N 

tfe(*) = £>*•'• (8) 
i= i 

with fi = Ti + Y^^i v(rij)rij, a n d »?(r) = Aexp[-((r-n)/w(,)2] . In the DMC imple­
mentation of the program we have used a superposition of the states with momenta 
q and — q which are degenerate in energy. This enabled us to avoid working with 
a complex wave function. In this way the calculation of the excited state energy 
turned into a fermion-like problem since the resulting trial wave function is real but 
not positive everywhere.26 In a first step, we have used the fixed-node (FN) ap­
proximation, which provides an upper bound to the roton energy. We have verified 
that the introduction of backflow correlations in the trial wave function produces 
results quite close to experimental data at the equilibrium density, especially near 
the roton minimum. The nodal constraint imposed by FN is removed, in a second 
step, by using the RN technique. In the RN approach, walkers are allowed to cross 
the nodal surface imposed by ip and survive for a finite lifetime t. This is achieved 
by introducing the auxiliary guiding wave function ^ S (R) , positively defined every­
where, which approaches the | ^ (R) | away from the nodal surface and is non-zero 
in the nodes. The function ipg(IL) = tpj(R)(tp^(R) + a2)1/ /2 achieves this goal for 
the proper choice of parameter a. The excited state energy is estimated through an 
exponential fit E(t) = Er + Ae~^^T\ with t the released time. The uncertainty of 
this extrapolation is under control since in all cases the difference between consid­
ering the last calculated point in released time or Er is of the same order as the 
statistical noise. The energy of the roton is then expressed as the difference between 
the excited and the ground state energy er = Er - E0. Since both the ground and 
the excited state energy have statistical errors, the resulting errors for the roton 
energy are quite large and difficult to reduce. 

The results for the roton energy as a function of the pressure are shown in Fig. 
5 and compared to experimental data obtained by neutron scattering experiments 
on superfiuid 4He in a porous media and up to 40 bar.11 From 0 to 40 bar, the 
measured er decreases linearly with the pressure and our data reproduces well this 
behavior. However, increasing the pressure we find that this slope is reduced. At the 
highest density studied the roton energy is still different from zero (er = 2.8 ± 1.2 K 
at p = 0.58 o"~3). At each density, the number of particles has been adjusted to be 
as close to the roton momentum as possible. Due to the finite size of the simulation 
cell only discrete values of q are accessible , so corrections to the energy due to 
this fact are possible. However, we estimate them to be less than 0.5 K in all cases. 
In Fig. 6 we show the obtained values of the roton momentum and compare them 
with the measurements in the stable24 and overpressurized regime.11 Our results do 
not follow linear dependence with pressure, as the data in the stable liquid regime 
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0 50 100 150 200 250 
P(bar) 

Fig. 5. Roton energy as a function of the pressure (solid circles). Open circles stand for experi­
mental data from Ref. 11. The line is an exponential fit to the DMC data. 

2.5 

2.4 

2.3 

S 2.2 
a* 

2.1 

2 

1.9 

0 50 100 150 200 250 
P(bar) 

Fig. 6. Roton momentum as a function of the pressure (solid circles). Open circles stand for 
experimental data from Ref. 11 and open square for experimental data from Ref. 24. 

might suggest.24 As the pressure is increased, the slope of the roton momentum as 
a function of pressure decreases. 

4. Conclusion 

It has been shown that overpressurized metastable liquid 4He can be studied with 
DMC method.14 '15 Along the pressure range from freezing to almost 300 bar, no 
signature of liquid/solid instability appeared. The finite value of condensate fraction 
and roton gap imply helium 4He remained superfluid despite the fact that the 
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pressure increased more than 10 times. Static s tructure factor, condensate fraction 

and roton energy are however driven by the density (which increased less than 50% 

from freezing to maximum density studied) and not by the pressure. As can be seen 

in the Fig. 2, equal density increments in the stable and metastable regime produce 

clear differences in the pressure increase. This leads, in the density range studied, 

to an approximated exponential decrease with rising pressure of magnitudes like Bo 

and er. 
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