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Supersolidity in quantum films adsorbed on graphene and graphite
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Using quantum Monte Carlo we have studied the superfluid density of the first layer of 4He and H2 adsorbed on
graphene and graphite. Our main focus has been on the equilibrium ground state of the system, which corresponds
to a registered

√
3 × √

3 phase. The perfect solid phase of H2 shows no superfluid signal, whereas 4He has a
finite but small superfluid fraction (0.67%). The introduction of vacancies in the crystal makes the superfluidity
increase, showing values as large as 14% in 4He without destroying the spatial solid order.

DOI: 10.1103/PhysRevB.83.121406 PACS number(s): 68.90.+g, 67.25.dp, 05.30.Jp, 67.80.bd

A supersolid state of matter is a fascinating possibility
that has long attracted interest from both theoretical and
experimental viewpoints.1,2 The simultaneous existence of
spatial lattice order and off-diagonal long-range order defining
a supersolid is rather counterintuitive and only a theoretical
entelechy up to recent times. The old theoretical ideas put
forward by the pioneering works of Andreev and Lifshitz3

and Chester4 and Reatto5 have revived dramatically since
the experimental findings of Kim and Chan6 in 2004 on
the evidence of nonconventional moment of inertia in solid
4He below some characteristic temperature around 100 mK.
Whether these and some other similar experiments carried out
by other teams are an unambiguous proof of the existence of
supersolidity or not is still a matter of debate.

At present, much less is known on possible supersolid
scenarios in two-dimensional (2D)7 or quasi-two-dimensional
(Q2D) solid 4He. Helium atoms, when adsorbed on graphite
or graphene, arrange sequentially in stacking layers that can
be considered as nearly 2D systems.8 Interestingly, recent
experiments carried out by Nyéki et al.9 in the second layer of
4He adsorbed on graphite point to the existence of a (

√
7 × √

7)
commensurate solid phase that exhibits superfluid fractions
as large as 20%. However, recent path integral Monte Carlo
(PIMC) work10 does not seem to support the existence of this
phase, which was first predicted in simulations where the first
layer of 4He atoms was considered as inert.11 Nevertheless,
the possibility of having a supersolid in a 2D environment,
supported by Nyéki et al.’s observations,9 opens new and
exciting avenues for the analysis of this new state of matter.

Recently, we have calculated the zero-temperature phase
diagram of the first layer of 4He (Ref. 12) and H2 (Ref. 13)
adsorbed on graphene and graphite using quantum Monte
Carlo (QMC) methods. Our results predict that the equilibrium
ground state of both systems is a

√
3 × √

3 commensurate
phase, a conclusion which, in the case of graphite, is in
agreement with other low-temperature simulations and ex-
perimental data.14–16 The aim of our previous studies was
basically the determination of the energies of the different
possible phases to draw the phase diagram and not the study of
off-diagonal long-range order and/or superfluidity. To this end,
we used a nonsymmetric wave function for describing the solid
phases, an approach which obviously hinders any insight on
the properties directly related to their Bose-Einstein statistics

but which guarantees accurate evaluation of the energies due
to the low-rate interparticle exchange. In this work, we are
mainly concerned with the possibility of supersolidity in the
first layer of 4He and H2 adsorbed on graphene and graphite so
that our methodology has been changed accordingly. Besides
the characterization of the equilibrium ground-state phases, we
have also analyzed the influence of vacancies in the superfluid
response and energy of these films since point defects are
indeed observed during quantum layer nucleation on carbon
surfaces. It is worth mentioning that previous low-temperature
attempts using PIMC have not found any signal of superfluidity
in these layers10,11 although possible supersolidity induced by
defects was not analyzed.

Since we are interested in possible ground-state supersolid
phases of the first 4He and H2 layers adsorbed on graphene
and graphite, we use the diffusion Monte Carlo (DMC)
method that, working at zero temperature, solves stochastically
the Schrödinger equation of the N -particle system in an
essentially exact way (within some statistical uncertainties).17

Zero-temperature approaches are especially adequate for these
systems since the onset temperatures for supersolidity are, at
least in bulk solids, very small (50–100 mK), thus making
finite-temperature approaches like PIMC of difficult use. The
Hamiltonian of the system includes both interparticle [V (r)]
and particle-substrate [U (r)] interactions,

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i<j

V (rij ) +
N,Ns∑
i,J

U (riJ ), (1)

with capital indexes running on carbon substrate atoms and
normal indexes on He atoms or H2 molecules. The 4He-4He
and H2-H2 interactions are modeled by the accurate Aziz II
(Ref. 18) and Silvera-Goldman19 potentials, respectively. The
adsorbate surface potential is obtained by summing all the pair
atom(molecule)-adsorbate interactions modeled by Lennard-
Jones potentials. By summing up all the latter pair interactions,
we introduce in the description of the system the necessary
corrugation to observe that a commensurate solid phase is
effectively preferred for being the ground state.12,13

As it is usual in DMC, we introduce a trial wave function
for importance sampling which improves the variance of the
statistical estimation. Our variational model contains basic
information: It is zero at shorter distances than the (hard-)core

121406-11098-0121/2011/83(12)/121406(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.121406


RAPID COMMUNICATIONS

M. C. GORDILLO, C. CAZORLA, AND J. BORONAT PHYSICAL REVIEW B 83, 121406(R) (2011)

of the potential and becomes constant at large distances
(Jastrow wave function); it is symmetric under the exchange
of particles (Bose-Einstein statistics) and localizes particles in
preferred points (sites) for solid phases. Explicitly,20

�(R) =
N∏

i<j

f (rij )
Ncr∏
I=1

[
N∑

i=1

g(rI i)

]
. (2)

In Eq. (2), R = {r1, . . . ,rN }, f (r) is a two-body Jastrow
correlation factor, g(rI i) = exp[−α(r i − rI )2], and Ncr is the
number of lattice sites of the selected crystal structure. Model
wave function (2) fulfills simultaneously spatial solid order
and exchange-particle symmetry avoiding the numerically
unworkable use of permanents on top of the nonsymmetric
Nosanow-Jastrow wave function. The value of the variational
parameters in � are the same as the ones reported in Refs. 12
and 13.

We have focused our attention in the
√

3 × √
3 commensu-

rate phase of 4He and H2 since this is the equilibrium ground-
state structure and best candidate for exhibiting supersolid
behavior due to its quite low density. The simulation cell is
a rectangle of fixed dimensions 44.27 × 42.60 Å2, where the
number of sites of the registered phase is Ncr = 120 and the
number of particles is 115 � N � 120; that is, we consider
up to a maximum of five vacancies. The dependence of the
energy per particle with the number of vacancies, reported
as a function of the particle density, is shown in Fig. 1 for
4He and H2 on top of graphene and graphite. For comparison
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FIG. 1. (Color online) (a) Energy per 4He atom with different
number of vacancies, plotted as a function of the particle density.
(b) Same as in (a) but for H2. In both cases the energy per particle
of the commensurate phase with no vacancies (E/N )0 is subtracted.
Solid line and squares (dotted line and diamonds) stand for energies
when the adsorbate is graphene (graphite).

purposes, those curves have been displaced downward an
energy shift (E/N)0 which corresponds to the energy of the
perfect structures reported in Refs. 12 and 13. For the present
analysis it is enough to mention that the binding energy of
H2 is approximately 2.5 times larger than that of 4He and that
in both systems the interactions with graphite are about 10%
more attractive than with graphene.

As shown in Fig 1, the binding energies per particle increase
systematically with the number of vacancies so the equilibrium
ground state always corresponds to the perfect commensurate
lattice. The variation of the activation vacancy energy is
linear in both cases and slightly larger in graphite where
the adsorption energies are invariably ∼10% larger than in
graphene. Comparing the results obtained for 4He and H2,
one can see that the energy difference E/N − (E/N)0 is
roughly 10 times larger for hydrogen; however, as the absolute
values for both solids are so different, it is better to make a
comparison in relative terms: The energy cost of creating five
vacancies in 4He is 0.15% of the ground-state energy while
in H2 is 0.43%. When the number of vacancies increases,
and therefore the particle density decreases, the equation of
state of the solid with vacancies approaches the equation of
state of the metastable liquid phase. This analysis is especially
interesting when graphene is the substrate since the difference
in binding energy at the equilibrium point of the liquid and
the one at the commensurate solid phase is very tiny, nearly
4 times smaller than in graphite. For both 4He and H2, all the
energies shown in Fig. 1 are below the ones calculated for
the corresponding liquid phases at the same densities. If the
linear behavior observed in the figure is extrapolated to smaller
densities, one can see that in 4He the intersection with the liquid
equation of state is produced at density σc = 0.058 Å−2, which
would correspond to 10 vacancies in the simulation box. In
this case, σc is larger than the equilibrium density of the liquid
σ0 = 0.044 Å−2; thus, the crossing point will appear at finite
pressure. In contrast, the intersection with the liquid equation
of state in hydrogen appears at density σc = 0.052 Å−2, which
is smaller than the equilibrium point σ0 = 0.059 Å−2 and thus
corresponds to the metastable negative-pressure regime.

A discussion on possible supersolid phases of helium
and hydrogen on top of graphene or graphite requires the
estimation of the superfluid density fraction of the different
solid phases that appear in their respective phase diagrams. In
QMC, the superfluid fraction can be computed by sampling
the winding number21

W =
N∑

i=1

∫ β

0
dτ

(
d r i(τ )

dτ

)
, (3)

with τ the imaginary time and β = T −1. In the limit of
zero temperature β → ∞, the winding number (3) turns to
the diffusion coefficient of the center of mass of the N

particles (RCM ) in the simulation box with periodic boundary
conditions,22

ρs

ρ
= lim

τ→∞ α

(
Ds(τ )

τ

)
, (4)

where α = N/2dD0, with d the number of dimensions (d = 2
in the present case), D0 = h̄2/2m, and Ds(τ ) = 〈[RCM (τ ) −
RCM (0)]2〉. The diffusion coefficient Ds(τ ) can be calculated
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FIG. 2. (Color online) DMC estimation of the superfluid density.
Solid, dotted, and dashed lines stand for commensurate 4He, incom-
mensurate 4He, and commensurate H2 phases on top of graphene,
respectively.

using the DMC method, in which the imaginary time evolves
in a continuous way, and it can be proved that in the asymptotic
regime this estimator is unbiased with respect to the particular
choice of the trial wave function used for importance sampling
(within a specified physical phase). According to the typical
statistical noise in DMC simulations, the resolution of this
estimator is much lower (∼1 × 10−5) than in PIMC, where
superfluid signals below ∼1 × 10−2 are extremely difficult to
be measured.

In Fig. 2, results for αDs(τ ) as a function of the imaginary
time τ are shown. As obvious from its definition (4), a
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FIG. 3. (Color online) (a) Superfluid fraction of the 4He com-
mensurate solid phase with different number of vacancies Nv .
(b) Same as in (a) but for H2. Solid line and squares (dotted line
and diamonds) stand for superfluid fractions when the adsorbate is
graphene (graphite).

finite superfluid fraction appears as a finite slope in the
long-time behavior of the diffusion coefficient Ds(τ ), their
particular values being not relevant and fairly dependent
of the kind of system under study. Our results for the
perfect (no vacancies) solid phases plotted in Fig. 2 show
different behaviors depending on the system and solid phases
considered. Diffusion coefficient results for long time τ

obtained for the
√

3 × √
3 commensurate phase of 4He on top

of graphene (and also in graphite) show a small but clear slope
[ρs/ρ = 0.0067(1)] that contrasts with the null τ variation
observed in a incommensurate phase of density 0.0999 Å−2.
Interestingly, simulations performed in the commensurate
phase of H2 indicate zero superfluid fraction, thus areal density
must be ruled out as the only cause behind supersolidity
in quantum films. Moreover, as it was shown in the DMC
calculation of 2D and quasi-2D 4He in Ref. 23, the superfluid
fraction of a purely 2D crystal is zero even at densities below
the

√
3 × √

3 phase, and finite superfluidity emerges only with
the opening of a transverse direction that particles can explore.
According to these previous results, the zero signal observed in
H2 can be explained in terms of transverse motion frustration
resulting from intense molecular binding to carbon surfaces.

One of the aims of this work has been the study of the
influence of the number of vacancies in the superfluid fraction
of quantum solid layers. To this end, we have calculated ρs/ρ

for the commensurate phase of 4He and H2 on top of graphene
and graphite with up to five (Nv) vacancies within a total of
120 possible sites of our simulation cell. The results, shown in
Fig. 3, show a linear increase of the superfluid fraction with Nv
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FIG. 4. (Color online) (Top) Snapshot of the probability density
(crosses) of commensurate solid 4He on top of graphene. (Bottom)
Same as in the top panel but with five fewer particles in the simulation
box. In both figures, squares are the sites of the perfect crystal.
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for both helium and hydrogen. The increase of superfluidity
with Nv is significantly larger for 4He; for instance, in the
Nv = 5 case ρs/ρ amounts to 0.14 and 0.047 for 4He and
H2, respectively. The effect of the substrate on the superfluid
fraction is smaller in helium than in hydrogen but in both
cases ρs/ρ is always larger in graphite than in graphene. The
difference is very small in 4He but significant in H2. A possible
explanation of the increase of superfluidity in graphite relies
on the slightly reduced motion in the transverse direction due
to stronger attraction with respect to graphene. This increase
in confinement makes more effective the motion of the center
of mass of the system in the x-y plane of the simulation box,
where large particle-permutational rings can be created, and
consequently ρs/ρ increases (4).

We have verified that in both hydrogen and helium the
periodic spatial order characteristic of the solid phase is
conserved up to five vacancies in 120 possible sites. This is
shown in Fig. 4, where characteristic snapshots of DMC sim-
ulations are shown for the perfect and defective Nv = 5 film
phases (4He). These snapshots correspond to the probability
density that in DMC is represented by a collection of walkers,
each one of 3N coordinates, that evolves in imaginary time
according to the Schrödinger equation. As one can see, even
in the case of the perfect crystal there is a finite probability
of visiting the intersite space, which can be interpreted as
the finite exchange probability leading to nonzero superfluid
signal (a quantitative estimation of probability exchange would
require of specific methods beyond the scope of the present

work24). When vacancies are present in the system the paths
connecting different sites become more populated, that is, the
superfluidity increases, but solid order remains preserved. It is
worth noticing that in the snapshot of the layer with vacancies
one cannot allocate the vacancies implying that they have
become indistinguishable. Same snapshots for H2 show that
in the perfect crystal the intersite occupation is zero (zero
superfluidity) and that the vacancies are identified more easily
than in helium.

Summarizing, using the DMC method we have studied
the supersolidity of the first layer of 4He and H2 adsorbed
on graphene and graphite in the limit of zero temperature.
The 4He

√
3 × √

3 commensurate phase shows a small but
finite superfluid signal (0.67%), whereas the H2 one does not
within our resolution limit (1 × 10−5). When vacancies are
present in the system, the superfluid fraction increases with
the concentration of defects; this effect is larger in helium
where we have obtained values as large as ρs/ρ = 14%. As
the presence of point defects in quantum layers is plausible due
to imperfections in the adsorbent surfaces, further experiments
on quasi-2D systems can lead to the emergence of new and
tunable supersolid scenarios.9,25
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