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We use an accurate implementation of density-functional theory to calculate the zero-temperature general-
ized phase diagram of the 4d series of transition metals from Y to Pd as a function of pressure P and atomic
number Z. The implementation used is full-potential linearized augmented plane waves, and we employ the
exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the
ground-state energy for several crystal structures over a range of volumes, the energy being converged with
respect to all technical parameters to within �1 meV/atom. The calculated transition pressures for all the
elements and all transitions we have found are compared with experiment wherever possible, and we discuss
the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of
state is generally excellent. The generalized phase diagram of the 4d series shows that the major boundaries
slope toward lower Z with increasing P for the early elements, as expected from the pressure induced transfer
of electrons from sp states to d states, but are almost independent of P for the later elements. Our results for
Mo indicate a transition from body-centered cubic to face-centered cubic, rather than the bcc-hcp transition
expected from sp-d transfer.
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I. INTRODUCTION

The transition metals are among the most intensively
studied families of elements, and there has been an effort
going back several decades to map and interpret systematic
trends in their properties. Some of these trends are of funda-
mental importance to our understanding of the energetics and
electronic structure of transition metals. Examples include:
the parabolic dependence of cohesive energy and bulk modu-
lus on d-band filling;1 the sequence of most stable crystal
structures associated with increasing band filling at ambient
pressure;2 and the pressure induced increase of d-band width
going roughly as the fifth inverse power of the atomic
volume.3 However, our knowledge of transition-metal sys-
tematics is still very far from complete, as is evident from
the current major controversies over high-pressure melting
curves.4–7 Even at low temperatures, there are sizable gaps in
the map of transition-metal phase diagrams, and new crystal
structures continue to be discovered.8 We report here a sys-
tematic investigation of the zero-temperature phase diagram
of all the 4d transition metals over a wide range of pressures,
based on one of the most accurate implementations of
density-functional theory �DFT� currently available.

There have, of course, been very many previous detailed
studies of transition metals based on DFT, some of which
investigated the relative stability of different crystal struc-
tures at high pressures. However, most previous work has
been designed to address particular questions relating to par-
ticular metals. Here, by constrast, the aim is to obtain a co-
herent overall view of an entire transition-metals series. Spe-
cifically, using Z to denote atomic number, we wish to use
DFT to map out the generalized �P ,Z� phase diagram of the
4d series at T=0 K at pressures P up to �500 GPa.9 In
order to substantiate the accuracy of the calculations, we

shall compare our calculated results for P as a function of
volume V with all available experimental data. The calcula-
tions are all performed using the full-potential linearized
augmented plane waves10–13 �FP-LAPW� implementation of
DFT, which for a given exchange-correlation functional is
among the most accurate ways of calculating the total en-
ergy. We use the exchange-correlation functional recently de-
veloped by Wu and Cohen,14 which appears to reproduce the
experimental energetics of 4d transition metals more accu-
rately than other functionals.15

There are several motivations for wishing to obtain the
�P ,Z� phase diagram of a transition-metal series at T=0 K.
One motivation is the possibility of discovering hitherto un-
known crystallographic phase boundaries for particular met-
als. Another motivation is to probe our basic understanding
of transition-metal energetics. At ambient pressure, the most
stable crystal structures of the 4d and 5d series follow the
sequence hexagonal close packed �hcp� to body-centered cu-
bic �bcc� to hcp to face-centered cubic �fcc� with increasing
Z, and the 3d series nearly follows this sequence, the devia-
tions being caused by magnetic effects.16,17 This sequence is
entirely explained by band energies, and can be reasonably
well reproduced using a canonical d-band tight-binding
model with some modifications due to hybridization with sp
bands.18–20 The main effect of pressure is to shift the relative
energies of the d-band centroid and the bottom of the sp
band, and hence increase the d-band filling.18 This leads one
to expect that the same sequence of structures will be found
at high P, but with the boundaries shifted to the left �toward
lower Z�.21,22 We shall confirm that this is the case, though
the reality is slightly more complicated.

In addition to the motivations we have mentioned, there is
another that is important to us. Current controversies over
the high-pressure melting curves of transition metals stem
from apparent disagreements between melting temperatures
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deduced from static compression and shock experiments,
these disagreements amounting to several thousand Kelvin at
megabar pressures.6,7 DFT calculations of transition-metal
melting curves4,5,23 support the correctness of the shock re-
sults, and one of the proposed resolutions of the conflicts is
that the transitions identified as melting in static compression
are in fact solid-solid transitions. It would clearly help to
reduce the confusion if we had a better understanding of the
generalized �P ,T ,Z� phase diagram of transition-metal
series.9 At present, we have a fairly complete knowledge of
this only at low P, and, to a lesser extent, at low T. We see
the present attempt to complete the low-T �P ,Z� diagram as
an essential step toward mapping the full �P ,T ,Z� diagram.

Earlier DFT work has already given much information
about the energetics of transition metals at T=0 K. Particu-
larly important here is the work of Pettifor18,24,25 and others,
which provided a systematic understanding of the structural
trends across all the transition-metal series in terms of the
electronic densities of states of different crystal structures.
Their work also gave important insights into the pressure
induced transfer of electrons from sp states to d states. Also
important was the first-principles work of Skriver26 on struc-
tural trends across transition-metal series at zero pressure.
The pioneering work of Moriarty, Johansson, and others on
the high-pressure energetics of transition metals will be cited
below. The information from all this previous work could be
assembled to produce a substantial part of the �P ,Z� dia-
gram, but there would be inconsistencies from the use of
different DFT implementations and exchange-correlation
functionals. Here, we avoid such inconsistencies by using a
single high-accuracy method for all the calculations.

The remainder of the paper is organized as follows. In
Sec. II, we summarize the essential ideas underlying the
methods used in this work and the results of our convergence
tests. Then �Sec. III�, we present for each of the transition
metals from Y to Pd our calculated energy differences be-
tween different crystal structures and the equation of state
�EOS� P�V� for pressures from ambient to �500 GPa, com-
paring our results to experiments and previous calculations
where possible. At the end of Sec. III, we present the zero-
temperature �P ,Z� phase diagram of the 4d transition-metal
series. Discussion and conclusions are in Sec. IV.

II. TECHNIQUES AND TESTS

There are several implementations of DFT that can be
used to calculate the total energy per atom of a crystal, in-
cluding pseudopotential techniques,27 the projector aug-
mented wave technique,28,29 the full-potential augmented
plane-wave technique,10–13 etc. We have chosen to use FP-
LAPW here because for a given exchange-correlation func-
tional, it can give values for the total energy that are closer to
the exact value than most other implementations. There are a
number of technical parameters in FP-LAPW that control
convergence toward the exact value. We recall in this section
the main ideas of FP-LAPW, summarize the parameters that
control convergence, and report tests that guide our setting of
these parameters. The exchange-correlation functional used
for all the present work is that due to Wu and Cohen.14 Later

in this section, we outline briefly what this functional is, and
we report tests indicating that it should be particularly accu-
rate for present purposes.

A. Full-potential linearized augmented plane waves

In APW methods, space is divided into nonoverlapping
muffin-tin spheres �radius RMT� centered on the atoms and
the interstitial region between the spheres. Each Kohn-Sham
orbital is represented as a sum of radial functions multiplied
by spherical harmonics up to a maximum angular momen-
tum lorb

max in each sphere, and as a sum of plane waves �maxi-
mum wave vector Kmax� in the interstitial region; the coeffi-
cients are adjusted to achieve continuity at the sphere
boundaries. The Kohn-Sham eigenstates are divided into
core and valence states; core states are treated as being non-
zero only inside the muffin-tin spheres, while valence states
extend over all space. The radial functions used as basis sets
are solutions of the Schrödinger equation inside the atomic
spheres, and are therefore energy dependent. In LAPW, the
energy dependence is treated in a linear approximation. In
full-potential implementations �FP-LAPW�, the Kohn-Sham
potential is also represented as a sum over angular-
momentum functions within the spheres �maximum angular
momentum lpot

max� and a sum over plane waves �maximum
wave vector Gmax� in the interstitial region. As it stands, this
scheme is not accurate if there are semicore states, i.e., low-
lying states that are not adequately treated by linearization.
One solution to this problem is to linearize the basis func-
tions using different reference energies for valence and semi-
core states. Alternatively, one can augment the basis set with
“local orbitals,” this procedure being known as the “APW
+lo” method. We use the full-potential version of the latter
method here in order to treat all the valence and semicore
states. A fully relativistic treatment is used for core states,
and a scalar relativistic treatment for all other states. The
wave vectors k for which the Kohn-Sham equations are self-
consistently solved must be sampled over the Brillouin zone
of the crystal, and the well-known Monkhorst-Pack k-point
sampling scheme is used for this purpose.30 All the calcula-
tions were performed using the WIEN2k code.31

Throughout the present calculations, we aim to achieve
convergence of the total energy to within 1 meV/atom with
respect to all the parameters we have just mentioned. All
states having principal quantum number n�3 are treated as
core states, and all higher states as valence states. This
choice is based on the fact that the states with n=3 lie at least
200 eV below the Fermi level so they will not respond sig-
nificantly to compression even at megabar pressures. Pro-
vided the muffin-tin spheres do not overlap, and provided the
calculations are fully converged with respect to all param-
eters, the choice of RMT should not affect the results, but it
does affect the efficiency of the calculations. We used the
default setting of RMT provided by the WIEN2k algorithm,
which ensures that RMT varies appropriately as the volume
per atom is varied �that is, keeping the ratio between the unit
cell and muffin-tin sphere volumes more or less constant�. To
determine the settings required for the technical parameters
Kmax, Gmax, lorb

max, and lorb
pot, and for k-point sampling, we have
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conducted systematic tests on bcc, fcc, and hcp Mo; we as-
sume that the settings that give the required accuracy for Mo
will also serve for all the 4d transition metals in all the struc-
tures of interest.

Our tests on Mo indicate that the choices RMTKmax=9.5,
Gmax=18 bohr−1, lorb

max=10, and lpot
max=4, together with 14

�14�14 k-point sampling �14�14�7 for hcp�, give con-
vergence to within �1 meV/atom. To demonstrate that this
is the case, we have set all of these parameters except one to
the values just quoted, and studied the effect of varying the
free parameter. The values of total energy per atom Etot ob-
tained when we vary in turn RMTKmax, Gmax, lorb

max, lpot
max, and

k-point sampling are reported in Table I, from which we see
that the required convergence is indeed achieved with the
quoted values. These are the values used for all the calcula-
tions reported later. We note that, although we have paid
careful attention to convergence, there remain small errors
due to the linearization inherent in the FP-LAPW scheme.

B. Wu-Cohen exchange-correlation functional

The Wu-Cohen �WC� exchange-correlation functional is a
particular form of generalized gradient approximation

�GGA�. In GGAs, the total exchange-correlation energy is
the integral over the volume of the system of a density of
exchange-correlation energy, this density being expressed in
terms of the number density n�r� of electrons as
n�r��xc�n�r� ,s�r��. Here, �xc, the exchange-correlation en-
ergy per electron at position r, depends not only on n�r�
itself but also on the magnitude of its dimensionless gradient
s�r�= ��n� / �2�3�2�1/3n4/3�. The energy �xc is expressed as
�xc�n�r� ,s�r��=�x

unif�n�r��Fxc�n�r� ,s�r��, where �x
unif�n� is the

exchange energy per electron in the uniform electron gas of
density n, and Fxc is the so-called enhancement factor.

In the widely used Perdew-Burke-Ernzerhof �PBE� form
of GGA,32 a parameter-free formula expressing the depen-
dence on s of Fxc�s� was derived by requiring that certain
exact conditions be satisfied. The WC functional takes the
same GGA form as PBE for the correlation part of Fxc, but
modifies the exchange part. The modification was done with
the intention of improving the functional for condensed mat-
ter, at the expense of a somewhat worse description of atoms
and molecules. Specifically, the modification was based on
the idea that the exchange part of Fxc should be constructed
so as to reproduce the fourth-order gradient expansion of the
exact exchange-energy functional of the electron gas in the
limit of slowly varying density.34 The detailed form of the
exchange enhancement factor in the WC functional can be
found in the original paper,14 which also presents the results
of tests suggesting that the functional gives better results
than LDA and PBE for the equilibrium lattice parameter and
bulk modulus of a range of materials. Subsequently, tests of
WC were reported on a much more extensive set of materials
using the FP-LAPW implementation of DFT.15 These tests
supported the claim that WC is on average more accurate
than LDA or PBE, but they showed that the improvement
over these other functionals is by no means uniform. How-
ever, for 4d transition metals at ambient pressure, the WC
predictions of equilibrium lattice parameter and bulk modu-
lus are, with a few exceptions, better than both PBE and
LDA.

To confirm that the quality of WC is maintained at high
pressures, we compare in Fig. 1 our calculated results for
pressure P as a function of volume V at zero temperature for
Mo obtained with WC, LDA �Ceperley-Alder�,35 and PBE

TABLE I. Tests on convergence of FP-LAPW total energy per
atom Etot �eV units� for bcc Mo. Variation of Etot is reported with
respect to k-point sampling, plane-wave cutoff Gmax �bohr−1 units�
and angular-momentum cutoff lpot

max in representation of Kohn-Sham
potential, and plane-wave cutoff Kmax and angular-momentum cut-
off lorb

max in representation of orbitals �RMT is muffin-tin radius�. In
each section of the Table, only a single parameter is varied, the
other parameters being fixed as 14�14�14 �k-point sampling�,
Gmax=18 bohr−1, lpot

max=4, RMTKmax=9.5 and lorb
max=10.

k points Etot

10�10�10 −110178.7071

14�14�14 −110178.7100

16�16�16 −110178.7089

18�18�18 −110178.7095

Gmax �bohr−1� Etot

14 −110178.7099

18 −110178.7100

20 −110178.7100

lpot
max Etot

4 −110178.7100

6 −110178.7100

RMTKmax Etot

8.0 −110178.6681

9.0 −110178.7044

9.5 −110178.7100

10.5 −110178.7102

lorb
max Etot

10 −110178.7100

12 −110178.7093
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FIG. 1. Zero-temperature equation of state of Mo up to P
�400 GPa calculated with GGA�WC�, GGA�PBE� and LDA�CA�
exchange-correlation functionals. Dots show experimental data.36
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with experimental results up to P=300 GPa. The experi-
mental measurements were performed at room temperature
but were corrected for thermal effects so that they refer to
T=0 K.36 The comparisons show that WC is in almost per-
fect agreement with experiment over the entire pressure
range, while both LDA and PBE show significant deviations.
Comparisons of calculated P�V� curves with experimental
data for other 4d transition metals presented in the Sec. III
further confirm the quality of WC.

III. RESULTS

For each of the 4d transition metals from Y to Pd, we
have calculated the total energy at a closely spaced series of
atomic volumes for the body-centered cubic, face-centered
cubic, and hexagonal close-packed structures. In some cases,
we have also studied other crystal structures. For the case of
noncubic structures, we optimize the corresponding c /a ra-
tios once for some volume near equilibrium and then per-
form the calculations at fixed c /a ratio. However, in the pres-
ence of a phase transition, we reoptimize the c /a ratios of
interest as required. The pressure as a function of volume is
obtained for each structure by fitting the total energy results
with a third-order Birch-Murnaghan equation of state.37

From these results, we straightforwardly obtain the most
stable crystal structure at each pressure, as well as the pres-
sures of the structural transitions and the volumes of the
coexisting phases at these transitions. In the following, we
present first for each element the difference between the en-
ergy per atom in each structure and the energy in bcc struc-
ture, as a function of V. We then present P�V� of the stable
structures over the pressure range from ambient to typically
500 GPa. Where possible, we compare P�V� and the transi-
tion pressures with experimental measurements, and we in-
dicate the relation with previous theoretical results.

A. Yttrium

Experimentally, Y has the hcp structure at ambient pres-
sure, and with increasing pressure passes successively to the
�-samarium ��Sm�, double hcp �dhcp�, and fcc
structures.38–40 This is the same sequence of structures ob-
served in the lanthanides under pressure, as has often been
discussed.41 Earlier DFT calculations on Y have correctly
predicted these structures,42 and also indicated a transition to
bcc at very high pressure.43 Figure 2 reports our calculated
energies of the hcp, �Sm, dhcp, and fcc structures relative to
bcc as a function of V. This shows the sequence of stable
structures in the experimentally observed order. The resulting
EOS is reported in Fig. 2 �we find V0=30.89 Å3/atom�, and
the transition pressures and volumes are given in Table II.
Although the calculated sequence of crystal structures is the
same as that observed experimentally, we significantly un-
derestimate the transition pressures by at least 10 GPa. The
difference is considerably greater for the transition �Sm
→dhcp, but it is clear from Fig. 2 that the energy curves of
these two structures follow each other so closely that the
prediction of this transition pressure is likely to be very chal-
lenging. Possible reasons for our underestimation of the tran-
sition pressures are discussed in Sec. IV.

We also report in Table II the results of very recent DFT
work on Y up to �150 GPa by Lei et al.,42 as well as those
of the older work of Melsen et al.43 The hcp-�Sm and
�Sm-dhcp transition pressures Pt of Lei et al., who used
FP-LAPW based on LDA, are within 2 GPa of ours. It is
known that some tranverse phonons of fcc Y are unstable at
pressures below 90 GPa.44 Based on this fact, Lei et al. ana-
lyze a distorted fcc structure that they find to be more stable
than fcc. In order to save effort, however, we consider here
the fcc structure directly. It is striking that the fcc-bcc Pt of
Melsen et al., obtained from FP-LMTO calculations based

TABLE II. Calculated volumes V1, V2 �units of Å3/atom�, and
transition pressures Pt �units of GPa� from present work �earlier
DFT results in parentheses�, and experimental Pt for structural
phase transitions in Y.

Pt

Transition V1 V2 DFT Expt.

hcp-�Sm 32.44 31.88 −1.3 �−3 a� �15 c

�Sm-dhcp 28.30 28.21 4.2 �3 a� �30 c

dhcp-fcc 20.49 20.32 32.7 �44 d

fcc-bcc 8.61 8.57 513 �283 b�

aReference 42 �LDA�.
bReference 43 �LDA�.

cReference 39.
dReference 40.
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FIG. 2. Top: Energy differences �E of the hcp, �Sm �C19�,
dhcp �A3�� and fcc structures with respect to bcc in Y as function of
volume per atom. Bottom: Equation of state of Y up to P
�700 GPa.
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on LDA is below ours by over 200 GPa. It appears to us that
their treatment of semicore states was much more approxi-
mate than the one used here, and this may account for the
large difference. The very small volume change of only
�0.04 Å3/atom that we find for this transition will magnify
the effect of any technical errors in the prediction of Pt. We
return to this question in Sec. IV.

B. Zirconium

Experimentally, the stable structure of Zr at ambient pres-
sure is hcp, but measurements show a transition to the �
phase at the rather low pressure of 2.8 GPa, followed by a
transition to bcc at P�30 GPa.45 Our calculated energies of
the �, hcp and fcc structures relative to bcc as a function of
volume �Fig. 3� show the same sequence, and our calculated
P�V� in the � structure is in close agreement with experi-
mental data. However, as in the case of Y, our calculations
appear to underestimate the transition pressures �see Table
III�. We find that at P=0, T=0, the � structure is most stable
�with V0=23.04 Å3/atom and c /a=0.62�, the transition be-
tween hcp and � occurring at the negative pressure of
−4.1 GPa. Our calculated transition pressure between � and
bcc of 22.2 GPa is also significantly below the experimental
value of 30�2� GPa.46 The underestimation by �10 GPa is
similar to what we found for Y, and will be discussed in Sec.
IV.

Previous theoretical estimates of the �-bcc transition
pressure Pt show considerable variation �Table III�. It seems
that Pt from LDA is lower than that from PBE by �10 GPa,
but there are significant differences between results obtained
with the same DFT functional. The results of Jona and
Marcus49 seem to be seriously out of line with both experi-
ment and other calculations. We shall comment further in
Sec. IV.

C. Niobium

Experimentally, the observed structure of Nb is bcc over
the entire pressure range from ambient to �145 GPa. Our
total-energy results �Fig. 4� show that hcp, fcc, and � are all
less stable than bcc by at least 0.2 eV/atom over the pressure
range up to over 400 GPa. A possible phase transition at
pressures above 400 GPa may be suggested by the down-turn
in the energy difference between hcp and bcc at �400 GPa,
but we have not pursued this possibility. The agreement
of our calculated P�V� curve with the recent experimental
data of Kenichi and Singh52 obtained at room temperature
is excellent. Our calculated equilibrium volume V0

TABLE III. Calculated volumes V1, V2 �this work, units of Å3/atom�, and calculated and experimental
transition pressures Pt �units of GPa� for structural transitions in Zr. Calculated Pt values are listed according
to the exchange-correlation function �WC, LDA or PBE� used.

Pt �DFT�
Transition V1 V2 WC LDA PBE Pt �expt.�

hcp-� 24.45a 24.02a −4 a 3b

�−bcc 19.07a 18.43a 22a 24c 32c 30d

21.61e 20.96e 16f 28f

5g

18h 29h

aPresent work.
bReference 45.
cReference 47.
dReference 46.

eReference 50 �LDA�.
fReference 48.
gReference 49.
hReference 51.
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FIG. 3. Top: Energy differences �E of the hcp, � �C32�, and fcc
structures with respect to bcc in Zr as function of volume. Bottom:
Equation of state of Zr up to P�600 GPa; dots represent experi-
mental data from Ref. 45.
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=17.94 Å3/atom agrees closely with the experimental value
at ambient conditions53 of 17.98 Å3/atom.

D. Molybdenum

The properties of Mo have been intensively studied both
experimentally and theoretically over the last decade. We
mentioned in Sec. I the continuing controversy over its high-
pressure melting curve. At low temperatures, experiments
show that Mo has the bcc structure for all pressures up to
�400 GPa. There have been at least seven previous DFT
studies on its phase transitions at higher pressures, and all
agree that there is a transition to either hcp or fcc, but there
is no consensus about which high-P form is more stable.
There is also considerable variation of the predicted transi-
tion pressures. Our calculated energy differences fcc-bcc and
hcp-bcc �Fig. 5� show clearly that bcc is the stable phase up
to a pressure of nearly 660 GPa. Above this, both fcc and hcp
fall below bcc, but fcc is below hcp, and the fcc-hcp differ-
ence becomes more negative with increasing pressure. Our
calculated P�V� curve is in excellent agreement with experi-
mental data over the whole pressure range up to 300 GPa for
which there are data �we find V0=15.53 Å3/atom�.36

We summarize in Table IV all the DFT calculations on the
high-P transition in Mo, noting the predicted high-P struc-
ture and transition pressure Pt to that structure, together with
the DFT implementation and exchange-correlation func-

tional. In general, we believe that work in which careful
attention has not been give to convergence with respect to all
technical parameters and the treatment of semicore states
must be regarded as less reliable. However, it remains diffi-
cult to draw conclusions about the causes of the very large
differences between predictions, in some cases based on ex-
actly the same exchange-correlation functional. Further com-
ments will be made in Sec. IV.

TABLE IV. DFT predictions of the high-pressure phase of Mo,
with DFT method and exchange-correlation functional used, and
transition pressure Pt �GPa units� from works cited in first column.
Forms of LDA are due to Hedin-Lundqvist �Ref. 60� �HL�, Perdew-
Zunger �Ref. 61� �PZ� and von Barth-Hedin �Ref. 62� �BH�, and of
GGA to Perdew-Wang �Ref. 33� �PW� and Wu-Cohen �Ref. 14�
�WC�; the form of GGA used by Jona and Marcus was unspecified.

Ref. High-P phase DFT Method Exc Pt

21 hcp LMTO-ASA LDA�HL� 420

58 hcp FP-LMTO LDA�HL� 520

59 hcp FP-LMTO LDA�PZ� 620

55 hcp FP-LAPW GGA�?� 620

56 fcc FP-LMTO LDA�BH� 580

57 fcc LCGTO-FF LDA�HL� 660

23 fcc PAW GGA�PW� 720

This work fcc FP-LAPW GGA�WC� 660
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E. Technetium

Tc has the hcp structure at ambient pressure, but little
seems to be experimentally known about its behavior under
pressure. Our results for the energies of the fcc, hcp, and
simple hexagonal structures relative to bcc �Fig. 6� show that
hcp is the most stable up to pressures of at least 500 GPa,
and there is no indication that any of the other structures will
become more stable at higher pressures than this. The calcu-
lated P�V� curve of hcp Tc is reported in Fig. 6, but there
appear to be no experimental data to compare it with. Our
value for the equilibrium volume of 14.21 Å3/atom �being
c /a=1.63� agrees closely with the experimental value63

14.26 Å3/atom.

F. Ruthenium

At ambient pressure, the structure of Ru is hcp. Experi-
ments have been performed up to 56 GPa, and no phase
transition has been found. Our results for the energies of the
fcc and hcp structures relative to bcc �Fig. 7� show that hcp
is the most stable up to pressures of at least 400 GPa. As can
be seen in Fig. 7, our calculated EOS of hcp Ru is in very
good agreement with recent experimental data.64 In particu-
lar, we obtain an equilibrium volume of 13.42 Å3/atom,
which is close to the experimental value65,66 of
13.47 Å3/atom. �An earlier measured equilibrium volume67

of 13.57 Å3/atom is in rather poor agreement with our
value.� We also note that our calculated c /a value of 1.58,

which is similar to the result 1.57 obtained by Zheng-
Johansson et al.68 within LDA is exactly the value found
experimentally.64

G. Rhodium and palladium

The last two elements treated here, Rh and Pd, both have
the fcc structure at ambient pressure, and retain this structure
up to the highest pressures reached so far experimentally69,70

��50 and 77.4 GPa, respectively�. Our results for the energy
differences fcc-bcc and hcp-bcc �Figs. 8 and 9� give no in-
dication that any phase transition will be found in the range
up to �500 GPa. As for most of the other 4d elements, our
calculated EOS results �Figs. 8 and 9� are in close agreement
with experiment. Our calculated equilibrium volumes of
13.71 and 14.73 Å3/atom for Rh and Pd, respectively, agree
closely with the experimental values69,70 of 13.75 and
14.72 Å3/atom.

H. Zero-temperature phase diagram

The pressures of the transitions for each element �atomic
number Z� reported above can be regarded as points on phase
boundaries drawn in the �P ,Z� plane. These boundaries are
described by the dependence of P on Z treated as a continu-
ous, rather than a discrete variable. In the real world, the
elements form a discrete series, and only integer values of Z
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are available, but in DFT theory there is no difficulty in
treating Z as continuous. �In tight-binding theories of
transition-metal energetics, it is common practice to treat the
number of electrons per atom as continuous.� However, to
save effort, we have not actually attempted to perform FP-
LAPW calculations for noninteger Z, preferring to obtain the
phase boundaries by simple interpolation.

To perform the interpolation, we note that at T=0 K the
enthalpies H�E+ PV of coexisting phases must be equal. To
take an example, the hcp-bcc energy differences for Mo �Z
=42� and Tc �Z=43� at P=400 GPa are 0.62 and
−0.22 eV/atom, and the hcp-bcc volume differences are
−0.14 and −0.12 Å3/atom, so that the hcp-bcc enthalpy dif-
ferences are 0.27 and −0.52 eV/atom. By linear interpola-
tion, we estimate Z=42.34 as the coexistence value between
bcc and hcp at 400 GPa. We have used this interpolation
scheme to estimate the bcc-hcp boundary between Mo and
Tc, and the hcp-fcc boundary between Ru and Rh. For the
complicated region Y-Zr-Nb, we have performed interpola-
tion only for the fcc-bcc boundary passing through the Y-Zr
region; in the other cases, the boundaries have been drawn
approximately by means of straight lines. The resulting gen-
eralized phase diagram is shown in Fig. 10.

IV. DISCUSSION AND CONCLUSIONS

We noted in Sec. I the general expectation that the se-
quence of crystal structures across a transition-metal series

will be the same at high P as at low P, but that the phase
boundaries should slope to the left �dP /dZ	0�. The well-
known ideas behind this expectation are that �a� the sequence
of stable structures depends mainly on the band energy, i.e.,
the sum of single-electron energies; �b� the band energy de-
pends mainly on the d-band densities of states in the differ-
ent crystal structures, and on the number of d electrons; �c�
for given atomic number Z, increase of P causes the bottom
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of the d band to rise with respect to the d-band centroid, so
that the effective number of d electrons increases. Because of
this last effect, increase of P should cause a given element to
become more like its neighbor on the right. This is expected
to be a stronger effect for early transition metals, since the
increase of the effective number of d electrons with compres-
sion is larger for them.18

These expectations are confirmed most clearly by the ma-
jor boundary separating bcc from more close-packed struc-
tures on the left of the phase diagram. This boundary causes
Zr at rather moderate pressures to adopt the low-P structure
of Nb, and Y to do the same at much higher pressures. How-
ever, the boundary separating bcc and hcp in the middle of
the diagram is almost vertical up to P�100 GPa, and it is
only at much higher pressures that it slopes to the left; fur-
thermore, it appears that Mo never adopts the low-P struc-
ture of its neighbor Tc. Similarly, the boundary between hcp
and fcc on the right of the diagram is practically vertical up
to P�500 GPa.

DFT predictions of the many transitions shown by Y and
Zr already give evidence that DFT provides reasonably good
quantitative accuracy for the pressure dependence of band
structures. The bcc-fcc transition in Mo will probably remain
out of reach of experiment for some time. On the controver-
sial question of whether the high-P transition in Mo is really
bcc-fcc or bcc-hcp, our results support the former. The rea-
son for this controversy is clearly that the hcp and fcc ener-
gies are very close to each other, so that the calculations have
to be converged to high accuracy to yield reliable conclu-
sions. We have taken pains to ensure that our prediction of
bcc-fcc is robust with respect to all convergence parameters.
Consequently, we believe that the small and unexpected field
of fcc at high P and roughly half band filling is a real effect.

The bcc-fcc transition in Mo is relevant to the interpreta-
tion of the shock experiments mentioned in Sec. I. When this
transition was first studied theoretically, the predicted transi-
tion pressure was 420 GPa,21 which is much lower than our
value of 660 GPa. At that time, it seemed likely that the
transition is closely related to the transition seen in shock
experiments54 on Mo at P�210 GPa and an �estimated�
temperature of 3100 K. Our confirmation of earlier work
giving a much higher transition pressure makes it much less
likely that there is a direct connection with the shock transi-
tion. The only way of maintaining this connection would be
to postulate that the transition pressure decreases strongly
with increasing temperature. However, our DFT calculations
of phonon frequencies in the two structures72 show that the
transition pressure actually increases with temperature so
that a direct connection with the shock transition is com-
pletely ruled out.

Turning now to detailed comparisons with experiment, we
have shown that all our calculated equations of state P�V�
agree very closely with experiment. The sequences of stable
structures with increasing pressure are always correctly pre-
dicted, where experimental data are available, but our calcu-
lations have a clear tendency to underestimate transition
pressures Pt by typically �10 GPa. This can be attributed to
a relative shift 
E of the energies of coexisting phases. Since
at T=0 K, the enthalpies H of coexisting phases are equal, a
shift of Pt is related to 
E by


E = 
Pt���H1/�P�T − ��H2/�P�T� , �1�

where H1�P� and H2�P� are the enthalpies of the two phases.
Since ��H /�P�T=V, the shift 
Pt can be estimated as 
Pt
=
E / �V1−V2�, where V1 and V2 are the coexisting volumes.
Then a shift 
Pt=10 GPa equates to a ratio 
E / �V1−V2�
=60 meV /Å3 atom. Taking an example, the volume change
V1−V2 at the hcp-� transition of Zr was calculated to be
0.1 Å3/atom, so it would require a relative shift of 6 meV/
atom to account for the error in Pt. On the other hand, for the
�-bcc transition of Zr, for which V1−V2=0.6 Å3/atom, the
relative shift would have to be 36 meV/atom. It is easy to see
that room-temperature thermal effects are unlikely to be the
cause. Estimating the vibrational free energy per atom Fvib as
3kBT ln���̄ /kBT�, with �̄ the geometric-mean phonon fre-
quency, a difference 
�̄ between coexisting phases causes a
relative free-energy shift 
Fvib�3kBT
�̄ / �̄. With 3kBT
=80 meV at room temperature, unreasonably large 
�̄ / �̄
values would be required. On the other hand, we have cited
evidence �Table III� that differences between density func-
tionals can lead to Pt shifts of order 10 GPa in the �-bcc
transition of Zr. However, there is a third possible cause,
namely approximations in the implementation of DFT. We
have made efforts to ensure that our FP-LAPW energies are
converged to �1 meV/atom with respect to plane-wave and
angular-momentum cutoffs, but there remain possible linear-
ization errors, whose size is difficult to estimate. It seems
clear that such errors must be the reason for some of the very
large differences between DFT predictions of Pt values. We
think this explains the difference of over 200 GPa in the
predicted Pt of the fcc-bcc transition in Y �Table II�, because
the earlier DFT work was done at a time when the treatment
of semicore states was less well developed. The range of
�300 GPa in predicted Pt values for the high-P transition in
Mo must also be attributed to implementation errors in early
work.

We conclude by recalling that the present calculations on
the zero-temperature �P ,Z� phase diagram are intended as a
prelude to the systematic mapping of the �P ,T ,Z� diagram,
including the solid-liquid coexistence surface as a function
of P and Z. In spite of major progress in the first-principles
calculation of melting curves over the past 10 years,23,73–75

the computation of the entire �P ,T ,Z� phase diagram is
clearly a major challenge, which will need to be tackled in
stages. The use of DFT to calculate harmonic vibration
frequencies76 will allow quite rapid progress at temperatures
up to about one third of the melting temperature, and we
have already reported systematic calculations of this kind for
Fe, Ta, and Mo over a wide range of pressures.77,78 For melt-
ing curves, several first-principles methods are available.74,75

However, we believe it will also be valuable to make rapid
and more approximate surveys using tight-binding methods,
and we plan to report on this approach in the near future.
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