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SI1. Technical Details of the DFT ab-initio Molecular Dynamics


The temperature in the AIMD simulations was kept fluctuating around a set-point value by 

using a Nose-Hoover thermostat. Supercells of 3x3x2 Cu2Se unit cells, containing 216 atoms 

were used with periodic boundary conditions. Calculations were performed on the RAIJIN 

supercomputer which is part of the Australian National Computer Infrastructure. Newton’s 

equations of motion were integrated using Verlet’s algorithm and a time-step length of 1.5 

mailto:dcortie@uow.edu.au


femtoseconds (fs). Γ-point sampling for integration within the first Brillouin zone was 

employed. The simulations were equilibrated using 5 ps of run-time, and the total duration of 

each AIMD production run was for 120 ps.


SI2. Technical Details of the DFT Nudged Elastic Band Calculations


Our NEB calculations were performed for large 2x2x2 supercells containing 96 atoms. We 

used a dense q-point grid of 8x8x8 for first Brillouin zone sampling and an energy plane-

wave cut-off of 650 eV.


SI3. Landmark Analysis of ab-initio Molecular Dynamics


Here we provide a very brief introduction to the concept of landmark analysis for any 

unfamiliar readers.  In the standard approach of molecular dynamics, the atomic positions are 

written in Cartesian coordinates. While this is straightforward to visualize, it can make 

certain types of analysis difficult. For example, to analyze ionic hopping or chemical 

transport, it is desirable to identify when a chemical species has jumped from Site A to Site B. 

While, in principle, this can be extracted from the derivatives of the Cartesian positions, or by 

applying spatial thresholds, in practice this is complicated by the noise in the trajectory. Thus, 

it is generally advantageous to define new variables which depend only on the proximity to 

predefined landmark positions (e.g. a specific atom, a Voronoi center, a Wyckoff site) and use 

this to discriminate when jumping events have occurred. To identify the main hopping 

pathways in the Cu2Se, we first performed an elementary type of landmark analysis by 

positioning landmarks at every tetrahedral and octahedral interstitial site (labelled as T-sites 

and O-sites from this point forward). During the trajectory, any Cu that strays within 1 Å of a 

landmark is tagged with a site ID number and the site type (O or T) belonging to the nearest 

landmark. If the Cu’s site ID number changes, this corresponds to a hopping event, and by 

tracking the site types it possible to calculate the transition rates for O↔T, O↔O and T↔T 

transitions. In this way, hopping events and residence times, as well as transition probabilities 

can be identified. This was implemented using custom-written code in the Visualizing 

Molecular Dynamics (VMD) software. While the latter approach has the advantage of being 

simple, it does assume that landmarks can be defined as non-overlapping spheres positioned 



judiciously using prior knowledge of the crystal structure. Less biased landmark analysis can 

also be implemented using more sophisticated mathematics, by performing a decomposition 

of the Cartesian vectors into a new (non-orthogonal) basis set made of landmark vectors. If 

the landmark vectors are automatically positioned using Voronoi tessellation, similar 

landmark vectors can then be clustered automatically to identify special sites based on 

statistical criteria, and the resulting “site” can have an arbitrary shape. To this end, we also 

deployed the new SITATOR toolkit developed by Kahle et al. for “unsupervised” Voronoi 

landmark analysis. 


SI4. Partial density of states from the ab-initio Molecular Dynamics


Figure S1 shows the vibrational density of states obtained from ab-initio molecular dynamics 

at 700 K, decomposed into Cu and Se contributions. Figure S2 shows the variation of the 

total density of states with temperature which shows only a subtle variation. 





Figure S1. Partial density of states of the ab-initio molecular dynamics at 700 K 
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Figure S2.  Temperature dependence of the DOS extracted from the ab-initio molecular 

dynamics


SI5. Geometric and Statistical Considerations for Diffusion in the Ideal Fluorite Crystal 

Structure.


Ideal Cu2Se crystallizes in the anti-fluorite cubic structure, with the Se ions on a standard 

face-centered cubic (FCC) Bravais lattice, with lattice constant a.  Within this lattice, there 

are two interstitial sites, a tetrahedral (T) interstitial site at (¼, ¼, ¼), (¼, ¼, ¾) plus FCC 

translational vectors, and a larger octahedral (O) interstitial site at (½, ½, ½) plus FCC 

translational vectors.  The tetrahedral positions, if fully filled, form a simple-cubic lattice, 

with lattice constant a/2, and they satisfy the 2:1 stoichiometry of ideal Cu2Se. In contrast, the 

octahedral positions would support a 1:1 stoichiometry. Cu2Se is often thought of as a rigid 

selenium FCC lattice, with relatively mobile Cu ions on the tetrahedral interstitial sites.


The sizes of these interstitial sites, and the Cu-Se bond lengths, assuming that the copper ion 

would sit at the center of each respective polyhedron, are as listed in Table S1. The octahedral 

site is clearly larger than the tetrahedral site, but we know from the crystal structure that this 

is energetically unfavorable and in practice the T-site is the site where the majority of the Cu 

resides. 


Table S1.  The size of copper sites, and Cu-Se bond-length for the T and O sites in the cubic 

phase of Cu2Se.


Interstitial/Vacancy site 
in ideal FCC lattice

Distance from centre 
of polyhedron to 

corners, i.e. Cu-Se 
bond distance

Number of 
(triangular) 

faces

Number of 
edges

Number of 
vertices



The FCC lattice can be considered as a network of edge-connected tetrahedra, or equivalently 

as a network of edge-connected octahedra, Table S2.  If a Cu-ion is sitting within a 

tetrahedron, the most obvious way for it to leave its site is though one of the triangular faces, 

to one of the four neighboring octahedra (ideally along a [111] direction).  It can also move 

directly from its tetrahedron to one of the 6 edge-connected tetrahedra, passing through the 

mid-point of one of the edges.  This would involve hopping along a [100]-type direction.  But 

these very same edges connect the octahedra to other octahedra (in a direction perpendicular 

to the direct T-T hop).  In other words, the direct O-O hop would take place along [110]-type 

directions.  Hopping through a vertex, would involve a head-on collision with the selenium 

lattice points, and is therefore very unlikely.  In other words, the most open channels in the 

structure are through the polyhedron faces along [111]-type directions, from T→O or O→T.  

Less likely are the direct T→T [100]-type or O→O [110]-type hops, though the polyhedron 

edges.  The next-nearest direct T→T hop along [110], which is sometimes discussed in the 

physics literature, does not pass through any special symmetry points, and involves a short-

cut route through the octahedral site.  The direct route passes much closer to one of the 

selenium sites (vertices) and it is therefore energetically unfavorable.


Table S2. Geometric considerations for different types of hopping in Cu2Se. 


Tetrahedral at (¼, ¼, ¼) 
and (¼, ¼, ¾)

√3 a /4 = 0.433 a 4 6 4

Octahedral at (½, ½, ½) a / 2 = 0.5 a 8 12 6

Possible hopping routes

Nearest Cu-Se approach 

distance, in terms of FCC 

lattice constant a

Geometry

T-T, hopping along [100] a / 2√2 = 0.354 a through tetrahedral edge

T-T, hopping along [110] a/4 = 0.25 a No direct path:  involves a 

short-cut through an 

octahedron



In other words, from a steric point of view, T-O and O-T hops are far more likely than T-T 

[100] hops, which are in turn more likely than direct T-T [110] hops.


Finally, in the section below we analyze the statistics of finding a vacant tetrahedral site, to 

which a copper ion can jump. Let us consider non-stoichiometric Cu2-2xSe, in which the 

tetrahedral sites are not all occupied.  If any given Cu-ion is going to hop (via an octahedral 

site) to another tetrahedral site, it can only do so, if the new site is unoccupied.  It can jump to 

any of the four neighboring octahedral which are all unoccupied, but then it has eight options, 

one for each face of the octahedron:


(a) Jump right back to the tetrahedron, from whence it came


(b) Jump out through one of the three adjacent triangular faces, giving an overall ½ 

(100)-type hop


(c) Jump out though one of three next-closest triangular faces, giving an overall ½ 

(110)-type hop


(d) Jump out through the opposite face of the octahedron, giving an overall ½ (111)-

type hop


In other words, if the Cu ion makes any given T-O hop, and a fraction x of the tetrahedral 

sites are unoccupied, the probability of finding a vacant T site to jump onto is 7x (for small 

x).  More precisely, the probability is 1 – (1-x)7.  Or generalizing to a shell (or sphere) of n 

potential hopping sites, the probability, of finding at least a single vacant site onto which it 

can hop, is 1 – (1-x)n. 


But it is more complicated, because the initial T-O hop is one of four such possibilities, and 

each of these has its own set of (a-d).  But some of these go to tetrahedral sites that we have 

T-O (or O-T) hopping along 

[111]

a / √6 = 0.408 a through triangular face

O-O, hopping along [110] a / 2√2 = 0.354 a through tetrahedral edge, the 

same as T-T [100], but in the 

perpendicular direction



already considered.  In other words, if we consider T→O→T hops, there may be two 

different routes that the Cu-ion can take (via different octahedral).  And for T→O→O→T 

hops it is yet more complicated.


To simplify the analysis, it is useful to disregard the selenium sublattice, and only count 

through the occupancies of the shells of Cu-neighbors.  The Cu ions sit on a simple cubic 

lattice, with neighboring Cu ions as listed in Table 3.  All hops up to third nearest neighbor 

are possible via a single O site, and the cumulative probability up to the 3rd neighbors is 23 

%. Hopping to the 4th NN and above is not possible via a single O site, and for that reason 

hops to more distant than the 3rd NN are omitted from Table S3. 


Table S3. Statistical analysis of the probability of finding a vacancy that is accessible using a 

T-O transition in Cu2Se.


Neighbor

Cu-Cu 
spanning 
vector (on 

simple cubic 
copper 
lattice)

Accessible 
through a 

single 
octahedral site, 

T→O→T

Number of 
neighbors, n

Probability of 
having a 

neighboring site 
(in that shell) to 

hop into, for 
Cu1.98Se

(x = 1% 

vacancies);

P = 1 – (1-x)n

Cumulative 
number of 
neighbours 

within a 
shell, nS

Probability 
of having a 
neighboring 
site (within 
that shell) to 
hop into, for 

Cu1.98Se

(x = 1% 

vacancies);

P = 1 – (1-

x)ns

1st 
Nearest-
Neighbor

100 yes 6 5.85% 6 5.85%

2ndt 
Nearest-
Neighbor

110 yes 12 11.36% 18 16.55%



From this analysis, within the range of possible T →  O →  T hops (through a single 

octahedron), it is statistically twice as likely to be a net [110]-type hop, as opposed to a net 

[100]-type hop:  11.36% compared to 5.85% (for a 1% vacancy probability)


SI6. Experimental Thermal Conductivity: 


The thermal diffusivity (D) was measured by the laser-flash method (Linseis LFA 1000) 

under vacuum. The assumptions made when using this method include (i) homogeneity and 

isotropy of the material and (ii) property invariance with temperature within experimental 

conditions (see ASTM standard E1461 for full detail of technique). The specific heat (Cp) 

was determined by differential scanning calorimetry (DSC) (Netzsch DSC-204F1-Phoenix 

calorimeter) under an argon atmosphere with a flow rate of 50 ml/min. The sample density 

(ρ) was calculated using the measured weight and dimensions. The thermal conductivity (κ) 

was calculated by  Note that D is ostensibly depressed during the 

endothermic α→β  phase transition whereas Cp is ostensibly increased. The net result is a 

spurious value for κ whilst the phase transformation is in progress.


SI7. Technical Details of Neutron Scattering Experiment


To account accurately for the slight Q-dependence (angular dependence) of the resolution 

function, all data were fitted by convoluting with the true resolution function determined by 

measuring a vanadium standard. The data on the area detector was also normalized per-pixel 

to the signal from the vanadium standard. Data were collected at 300, 400, 500, 550 and 675 

K. The background signal was subtracted using scans of the empty sample can under 

identical conditions. To permit analysis of the quasielastic component, the Bragg reflections 

were excluded by removing the corresponding angular ranges on the detector bank. The 

remaining data were transformed into S(Q,ω) using a sufficiently coarse Q-resolution such 

3rd NN 111
yes (but only 
half of them)

8 (only 4 
through a 
single O-

site)

7.73% 26 (22) 23.00%

  =  D × Cp  × ρ .



that there are no missing points. Data manipulations and fitting were carried out using the 

Large Array Manipulation Program (LAMP) [1].


SI8. Details of the quasi-elastic fitting model


This section discusses a general and robust model that can place limits on the diffusion 

coefficients obtained with QENS, and which is generally suitable for superionic conductors. 

Although this approach sacrifices a small amount of accuracy, it contains the minimal 

description of the essential physical processes and can be used to place upper and lower 

bounds on the diffusion coefficient.  There are five distinct steps in the fitting process: 1) 

selection of of appropriate Q/  regions 2) establishing the minimal QENS model capturing 

the two distinct physical processes  3) quantitative fitting  4) extracting the long-range 

diffusion component 5) placing bounds on the data. Each of these steps is detailed below.


Selection of Q and  regions for fitting: In a superionic conductor, three types of motion 

coexist: 1) diffusion of one species, 2) confined diffusion for ions trapped near their stable 

site undergoing sporadic large displacements, and 3) phonons for the surrounding lattice 

causing small collective displacements. Disentangling these three factors in a solid-state 

QENS experiment is non-trivial because the atomic motion seen by neutron scattering in the 

intensity function  is a superposition of all degrees-of-freedom. However, by 

carefully selecting the  region, it is possible to select regions where the phonons make 

virtually no contribution and diffusive (QENS) processes dominate. To be specific, low 

energy acoustic phonons can be minimized by avoiding the Q-regions corresponding to zone 

centers. The optical phonons, which are present at all Q, are less of an issue since they 

generally contribute intensity at  >> 0 that is easily distinguished from QENS processes 

( .  However, in rare cases, low-energy optical modes can still provide a broad 

background signal, which can be mistaken for a broad quasielastic component. Thus, it is 

advisable to avoid any contribution of optical phonons by disregarding  energies near to 

and above the first optical branch. Identifying the strong coherent contributions in the 

simulated cross-section (e.g. Fig. 6(b)) is a good method to cross-check these choices. Thus, 

in Cu2Se, fitting was accomplished by using data for 0.5 Å-1 < Q < 1.6 Å1 away from the 

ω

ω

S(Q, ω)
ω /Q 

ω
ω~0)

ω



Brillouin zone centers, and at energies < 5 meV, below the first optical branches. This 

prevents spuriously inferring a QENS signal from low energy phonons.


Establishing the minimum QENS model:  Having restricted the  range, the next task 

is to separate the confined and long-range diffusion components via their unique  

dependence and energy-width. Confined diffusion involves the atom jumping around 

sporadically, but always eventually returning to the same site, owing to confinement. This 

generates an elastic component, together with a QENS component. The latter is generally tied 

to higher frequency vibrations thus giving a broader E-width described by a FWHM (Γ >2-10 

meV) with an FWHM (Γ) that is independent of Q (to a very good approximation). In 

contrast, long-range diffusion involves atoms leaving their initial site, and travelling long 

distances in the lattice. This leads to a Q-dependent FWHM (Γ that increases as Q2, at low 

momentum transfer, with a Γ that is typically in the range of 0.01 - 2 meV below Q = 2.0 Å-1. 

In general the two types of diffusion have very different time-scales, and long-range diffusion 

involves lower frequency events as many trial hops occur before each long-range hop.  To 

account for these two types of motion, it is generally necessary to use multiple Lorentzians to 

fit the QENS data. As shown in Figure S3, models fitting to a single Lorentzian yielded 

unsatisfactory results are reported by others [3, 8, 9], since it yields a convoluted average of 

the two processes, and the diffusion coefficient obtained will be unreliable. The single 

Lorentzian fit tends to overestimate the intensity near the elastic line and also fails to capture 

the higher energy region, leading to a large residue and a poor figure of merit (χ2). As 

discussed above, there is also good physical justification for expecting at least two 

components in the self-correlations, reflected in two (or more) distinct Lorentzian 

contributions to the QENS. In the case of Cu2Se, two Lorentzians are sufficient to fit the 

entire accessible Q/E range, as demonstrated in the manuscript and in Figure S3 below. To 

reliably separate the two processes, it is advantageous to constraint the fitting as described in 

the next section.


ω /Q 
Q



 


Figure S3. Comparison of QENS fits using a single Lorentzian (left) or 2 Lorentzians (right) 

to describe the quasi-elastic contribution. 


Quantitative fitting expression:  The minimal model that describes the QENS data in the 

Cu2Se superionic system is the δ-function elastic peak, in combination with two Lorentzian 

quasielastic components:


 	  	 	 	

	 (3)


The first Lorentzian L1 represents the localized, confined “jump-diffusion” around an average 

position: 


  		 	 	 	 	 	 	  	 	

(4)


It is well known that this type of confined diffusion leads to a FWHM (  ) that is 

essentially independent of Q2 [30]. As the particle sporadically returns to its original position, 

there is an elastic incoherent structure factor contribution given by A(Q) which depends on 

the confinement geometry. As a first approximation, the relation for a sphere with radius a 

S(Q, ω) =  A(Q)δ(ω) + (1 − A(Q))L1(ω) + L2(ω, Q)

L1 =
( Γ1

2 )
2

π[ω2 + ( Γ1

2 )
2] 

 

 Γ1



can be used since the deviation from this will be small at low Q for any more complex 

geometry [30]:


  	 	 	 	 	 	 	 	 	 	

(5)


where is the n=1 spherical Bessel function [31, 32]. In practice the fitting procedure can 

also leave A(Q) as a free parameter determined at each Q. This is the approach used in our 

work. Figure S4 compares the measured EISF with Equation 5  for the Cu2Se data at 675 K 

showing the results are very similar. The second Lorentzian accounts for long-range diffusion 

and has a Q-dependent energy-width ( :


  	 	 	 	 	 	 	 	 	

	 (6)


Thus, unlike 1 which is common to all Q points,  is a  free parameter determined at each 

Q value. It is important to recognize that this model is different from those of both Danilkin 

et al. [8] and Voneshan et al. [3] because it explicitly models the confined diffusion as a 

Lorentzian with Q-independent width.  The fits to this simple model are excellent, as shown 

in Figs. 7(a) and 7(b) in the main manuscript. The fitting was achieved using a 2D fit to 

minimize the global figure-of-merit χ2 by iterating Γ1 through a set of values whilst allowing 

ΓD to fit freely at each value. The results are discussed in the main manuscript.


A (Q) =  [ 3j1 (Qa)
Qa   ]

2

j1 

ΓD)

L2 =  
( ΓD

2 )
2

π(ω2 + (( ΓD

2 ))
2
  

Γ ΓD






Figure S4. Measured EISF compared with the EISF estimated from a simple spherical model 

with a = 3.3 ± 0.2 Å 


Extracting the long-range diffusion component:  Provided the localized QENS component 

is accounted for properly, as described above, the Q-dependence of the second Lorentzian 

component is the key to detecting the diffusion coefficients. Different types of long-range 

diffusion (Hall-Ross, Fickian and Chudley Elliot) will lead to some variation in the Q-

dependence at higher Q. In the case of the Cu2Se  system, neither the Fickian model (which 

describes the free diffusion such as in water), nor the Hall-Ross Model (which describes a 

fully random set of short-range of jumps with a Gaussian distribution) capture the Q-

dependency of the . Instead, in agreement with past work [3], the Q-dependence is well 

described by the Chudley-Elliot (CE) model which describes long-range diffusion by discrete 

jumps between distinct crystallographic sites with a characteristic spacing. In the CE model, 

the FWHM from the diffusive component is: 


	 	 	 	 	 	 	 	 	  

(2)


where τ is the hopping time, and d is the hopping length and the diffusion coefficient is d2/6τ. 

Fig. 7 (a) shows a plot of the behavior of the CE model, within the experimental range 

using d = 2 Å and d = 3 Å corresponding to T↔O and T↔T transitions respectively. The 
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most convincing method to clarify whether one of the latter hopping types dominates would 

be to observe a maximum in  at =   and the first minima in at = . 

However, this is outside of the available experimental Q-range in Cu2Se, so more 

approximate methods are needed. At very low Q, by taking the Taylor series of the CE model, 

one can see that  2  d2/ , and thus d2 and  parameters cannot be independently 

determined with a high level of precision, although the diffusion coefficient d2/  is well 

resolved and for this reason the d = 2Å and d = 3Å collapse onto each other at low Q in Fig. 

7. Meanwhile, at the other limit of extremely high Q, the CE model approaches a constant 

value of that is independent of d.  The accessible Q-range in Cu2Se is somewhere 

between these limits, where the models are expected to show differences, albeit with a 

FWHM that approaches the experimental resolution (S4).  For this reason, it is advantageous 

to establish the minimal model that can fit the data, and then use this to place broad upper and 

lower limits on the diffusion coefficients. 


.


Placing bounds on the data: There are solid physical grounds to expect both O↔T and 

T↔T hops, but from the QENS data alone it is difficult to separate these two types of motion 

as both have similar jump lengths and hopping timescales and so will yield a similar , thus 

potentially appearing as a single Lorentzian. As the diffusion coefficient determination 

depends, to some extent the ratio of O↔T to T↔T hops, we have developed a procedure to 

place bounds on the data assuming some distribution of hops. We assume that for two 

Lorentzians with the same width, within or near the resolution limit, these will appear as a 

single Lorentzian with an intensity that is the average of the two constituent Lorentzians, 

where the area under each Lorentzian is weighted by the fraction of each component. This 

allows assumption means that, for any fraction of different hops, the experiment will measure 

the intensity-weighted average (shown for example in Fig.S4) which always lies in the area 

between two single-Lorentzian limits obtained by assuming that 100% of either O↔T or 

T↔T  hops. Importantly, although the true value will be in this region, it may not necessarily 

appear at the mid-point, even if the ratio was 50:50 However, provided the single-Lorentzian 

ΓD Qd 
3π
2

Qd 
5π
2

ΓD~  ℏ τ  τ
6τ

2ℏ
τ

 

ΓD



data bounds all of the data, the true average will be included somewhere in the area bounded 

by the two curves. This allows one to place upper and lower limits. 


To illustrate this, Fig. S4 (a) shows a plot of the behavior of the CE model, within the 

experimental range using d = 2 Å and d = 3 Å corresponding to T↔O and T↔T 

transitions respectively. 





Fig. S5. (a) Plots of the Lorentzian width for the Chudley-Elliot model with two sets of parameters 

with d = 2 Å and d = 3 Å, chosen to give the same diffusion coefficients d2/6t. The region of Q/E 

accessible in the experiment is shown in shaded region, along with the energy resolution. Within 

resolution the two models will have the same FWHM. Assuming both types of hops coexist with the 

same likelihood, the dotted line shows the apparent average width weighted by the intensity of each 

Lorentzian. (b) The apparent intensity of each Lorentzian in the model assuming that the intensity is 

inversely proportional to the FHWM so that the integrated area under each Lorentzian is constant.
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