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We study molecular para-hydrogen �p-H2� and ortho-deuterium �o-D2� in two dimensions and in the limit of
zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties
of both systems such as the total and kinetic energy per particle, radial pair distribution function, and Linde-
mann’s ratio in the low-pressure regime. By comparing the total energy per particle as a function of the density
in liquid and solid p-H2, we show that molecular para-hydrogen, and also ortho-deuterium, remains solid at
zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based
on the Nosanow-Jastrow model, in the p-H2 solid film at the variational level. In particular, we analyze one
type of symmetrized trial wave function which has been used very recently to describe solid 4He and found
that it also characterizes hydrogen satisfactorily. Using this trial wave function, we estimate the one-body
density matrix �1�r� of solid p-H2 at several densities close to equilibrium and find off-diagonal long-range
order with a condensate fraction n0 that increases sizably in the regime of negative pressures. The extrapolated
estimation of n0 is observed to depend on the form of the symmetrized trial wave function used for importance
sampling however the corresponding order of magnitude remains the same in all the cases. We have also
computed the superfluid fraction �s /� of two-dimensional solid p-H2 at zero temperature in an unbiased way
and found that it is nonzero at negative pressures.
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I. INTRODUCTION

Quantum crystals such as helium and hydrogen are in-
triguing systems of fundamental physical interest. Due to the
light mass of their constituents and relatively weak interpar-
ticle attraction, quantum solids exhibit large kinetic energy
and Lindemann’s ratio even in the limit of zero temperature
�T�100–10−3 K�. In consequence, anharmonic effects and
atomic quantum exchanges are of importance in this class of
crystals. Moreover, in the last few years a series of ultralow-
temperature experiments performed in solid 4He by different
groups has led to a renewed interest on the possibility of
superfluidity and/or Bose-Einstein condensation �BEC� in
quantum solids.1–4 Essentially, these experiments analyze the
quantum behavior of the helium crystal upon rotation or seek
for some thermodynamic and/or structural anomaly signaliz-
ing a possible normal-to-superfluid phase transition. Despite
that most of the observations fairly agree in locating the
onset of superfluidity �75–150 mK�, there is a large disper-
sion in the value of the measured superfluid fraction �s /
���0.3%−0.005%�. At present, there is lack of conclusive
arguments for explaining these discrepancies but it is widely
accepted that the purity of the sample and the presence of
crystalline defects play on it a relevant role.5,6 On the other
hand, there is overall agreement among microscopic full
quantum calculations in practically ruling out superfluidity in
the perfect �free of defects� bulk configuration. It is worth
noticing that usual techniques devised to study classical crys-
tals �that is, crystals composed of heavier elements and with
larger cohesive energies�—such as, for instance, harmonic
based approaches—are no longer suitable for quantum solids
and calculations on them are in most cases challenging.7,8

In the present work, we present a theoretical study of
two-dimensional �2D� molecular para-hydrogen �p-H2� and
ortho-deuterium �o-D2� at zero temperature by means of
the diffusion Monte Carlo �DMC� method9–11 and the
semiempirical radial pair interaction due to Silvera and
Goldman.12 Hydrogen is a very interesting and challenging
system which has been investigated very intensively during
the last half century. As a matter of fact, hydrogen is the most
abundant element in the universe and from a technological
point of view it is considered among the most promising
green combustibles of the near future. Very interestingly, hy-
drogen has been predicted to exhibit a new state of matter at
very high pressures �P�400 GPa� in which superfluidity
and superconductivity might coexist.13,14

In this work, we restrict our analysis of molecular hydro-
gen and deuterium to the low-pressure regime �P�0� and
zero temperature. Contrarily to what occurs in helium, mo-
lecular hydrogen freezes at a temperature of 13.96 K in spite
of its lighter mass, given that the interactions between par-
ticles are more attractive �the minimum of the interaction
between hydrogen molecules amounts to �−37 K while in
helium it is �−10 K�. One of our motivations for carrying
out the present study was to unravel whether liquid p-H2
could be stabilized or not at zero temperature by reducing the
dimensionality with respect to the bulk. This possibility ap-
pears to be very appealing since it would provide a chance
for superfluidity and BEC to be observed in a quantum liquid
different from helium. In fact, p-H2 in one dimension and
inside a carbon nanotube has already been studied in the
zero-temperature limit and predicted to be liquid at its equi-
librium density.15 Also, small drops with a number of mol-
ecules N�26 present superfluid character.16–18 On the other
hand, it has been reported recently an experiment performed
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on molecular ortho-deuterium preplated on krypton at very
low temperatures �T�1 K� in which it is claimed evidence
for the existence of a reentrant o-D2 liquid phase.19 As it will
be presented in short, our results show that no first-order
solid-liquid phase transition occurs in two-dimensional H2 at
zero temperature. On account of this result, we straightfor-
wardly reject this possibility also for o-D2 since deuterium
molecules are heavier and their intermolecular interactions
are considered equal to the H2-H2 ones. Consequently, most
of the effort done in this work has been devoted to achieve
an accurate description of the ground state of two-
dimensional solid p-H2 and o-D2.

In this work, we calculate by means of the DMC method
some energetic and structural properties of both hydrogen
and deuterium films near equilibrium. Quantities such as the
kinetic energy per particle and Lindemann’s ratio have been
computed within the pure estimator approach20–22 in order to
remove any possible bias coming out from the trial wave
function �TWF� used for importance sampling. In this way,
we quote quantum isotopic effects in hydrogen directly and
only within the statistical uncertainty. Previous to the DMC
results, we present a variational Monte Carlo �VMC� study
of the p-H2 crystal in which we have tested the quality of
several symmetrized and unsymmetrized trial wave func-
tions. With this analysis, we determine the effect of symme-
trization on the total energy and the relevance of molecule
exchanges along the simulation. Moreover, we analyze
which symmetrized wave functions can be implemented in
DMC to the end of estimating the possible superfluidity and
BEC of the solid with simultaneous accurate description of
their energetic and structural properties. In particular, we
have studied in detail a symmetrized trial wave function,
named �JG

S3 in this work �the notation will become clear
later�, which has been proposed and used recently to study
bulk solid 4He.23 Here, we find that �JG

S3 also characterizes
solid hydrogen in two dimensions accurately.

Interestingly, we assess the behavior of the one-body den-
sity matrix �1�r� of p-H2 with density by means of the sym-
metric trial wave function �JG

S3 . In all cases, a very small
condensate fraction n0 is observed. For densities below the
equilibrium one and near the spinodal point, a significant
increase in n0 is observed pointing to the emergence of a
finite superfluid density.

This paper is organized as follows. In Sec. II, we present
a brief description of the semiempirical pair potential and
techniques used throughout this work. Next, in Secs. III and
IV, we report our variational and diffusion Monte Carlo re-
sults for p-H2 and o-D2 in two dimensions, respectively. Sec-
tion V is devoted to the examination of the one-body density
matrix �1�r� obtained with �JG

S3 and its dependence with the
density. Finally, in Sec. VI we summarize the main results
presented in this work.

II. MOLECULAR INTERACTION AND METHOD

The H2 �D2� molecule is composed of two hydrogen �deu-
terium� atoms linked by a covalent bond, which in the para-
hydrogen �ortho-deuterium� state possesses spherical sym-
metry �zero total angular momentum�. The energy scale

involved in electronic excitations ��105 K� is orders of
magnitude larger than the intermolecular one ��101 K�;
thus to model the H2-H2 �or D2-D2� interaction by means of
a radial pair potential and consider the molecules as pointlike
turn out to be justified upon the condition of low or moderate
pressures. In this work, we have adopted the well-known and
commonly used semiempirical Silvera-Goldman pair
potential.12 This potential has proved to perform excellently
at low temperature and at the pressure regimes in which we
are interested.

The ground state of para-H2 and ortho-D2 is determined
using the DMC method. DMC is a zero-temperature method
which provides the exact ground-state energy of many-boson
interacting systems within some statistical uncertainty.9–11

This technique is based on a short-time approximation for
Green’s function corresponding to the imaginary time
���-dependent Schrödinger equation. Despite this method is
algorithmically simpler than domain Green’s-function Monte
Carlo,11,24 it presents some ����n bias coming from the fac-
torization of the imaginary time propagator e−���/��H. Our
implementation of DMC is quadratic,25 hence the control of
the time-step bias is efficiently controlled given that the re-
quired ��→0 extrapolation is nearly eliminated by choosing
a sufficiently small time step. The Hamiltonian H describing
our system is

H = −
�2

2m
�
i=1

N

�i
2 + �

i	j

N

V�rij� , �1�

and the corresponding Schrödinger equation in imaginary
time �it���

− �
�
�R,��

��
= �H − E�
�R,�� , �2�

with E as an arbitrary constant. Equation �2� can be formally
solved by expanding the solution 
�R ,�� in the basis set of
the energy eigenfunctions ��n� �R��r1 ,r2 , . . . ,rN��. It turns
out that 
�R ,�� tends to the ground-state wave function �0
of the system for an infinite imaginary time as well as the
expected value of the Hamiltonian tends to the ground-state
value E0. The Hermiticity of the Hamiltonian guarantees the
equality,

E0 =
	�0
H
�0�
	�0
�0�

=
	�0
H
�T�
	�0
�T�

= 	H�DMC, �3�

where �T is a convenient trial wave function. As a conse-
quence, the ground-state energy of the system can be com-
puted by calculating the integral,

	H�DMC = lim
�→�

�
V

EL�R�f�R,��dR , �4�

where f�R ,��=
�R ,���T�R� and EL�R� is the local energy
defined as EL�R�=H�T�R� /�T�R�. The introduction of
�T�R� in f�R ,�� is known as importance sampling and its
use is important to reduce the variance of Eq. �4� to a man-
ageable level 
for instance, by imposing �T�R�=0 when rij is
smaller than the core of the pair interaction�.
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In this work, all the operators diagonal in real space
which do not commute with the Hamiltonian, which is


H , Ô��0, have been sampled using the pure estimator tech-
nique based on forward walking.20–22 Essentially, with this
method the possible bias introduced by �T in the mixed es-

timator 	�0
Ô
�T� is removed by proper weighing of the con-
figurations generated along the simulation.

III. MOLECULAR PARA-HYDROGEN

A. Variational Monte Carlo results

In this section, we present a VMC study of two-
dimensional p-H2 which provides us with the most conve-
nient TWF to be used in subsequent DMC calculations and
valuable physical insight on the system itself. In brief, the
VMC method relies on the variational principle which states
that given a Hamiltonian the energy difference EL−E0 aver-
aged over the probability density distribution 
�T
2 is always
positive and it decreases as the overlapping between �T and
the true ground-state wave function increases �EL and E0 are
the local energy defined in Sec. II and the ground-state en-
ergy, respectively�. In the present work, the main variational
effort has been devoted to achieve an accurate description of
the 2D solid phase. We have checked by means of VMC and
DMC that in both p-H2 and o-D2 systems the triangular con-
figuration is the stable one at all the studied densities. The
energies reported in this section have been calculated at the
density �=0.060 Å−2, which corresponds to the variational
equilibrium density of the solid.

In order to determine the nature of the ground state of the
system we have also carried out simulations for the liquid
phase. In this case, the trial wave function is of Jastrow type,

�J�r1,r2, . . . ,rN� = �
i	j

N

f2�rij� , �5�

where the two-body factors f2 account for the molecular cor-
relations arising in the system due to pair interactions. These
two-body correlation factors have been chosen of McMillan
form, f2=e−�1/2��b / r�5

, and as best value of the variational pa-
rameter b we obtain 3.70 Å.

For the solid phase, an additional one-body factor is in-
troduced ad hoc in the trial wave function to the end of
reproducing the periodic order of the system and so making
the sampling over the space of configurations more efficient
�Nosanow-Jastrow model�. Such one-body factor consists in
a productory of localizing functions centered on the positions
that define the perfect-crystal configuration �sites�, given by
the family of vectors �Ri�,

�NJ�r1,r2, . . . ,rN� = �J�
i

N

g1�
ri − Ri
� . �6�

We have explored two different trial wave functions based on
�NJ, each one consisting in a different choice for g1�r�. The
first model corresponds to the standardly used Gaussian
function,

gG�r� = exp�−
aG

2
r2� , �7�

while the second is a Padé function, defined as

gP�r� = exp�−
aPr2

1 + cPr
� , �8�

where aG, aP, and cP are variational parameters to be opti-
mized. Even though gG�r� and gP�r� are analytically quite
similar, the decay of gP to zero at large distance r can be
chosen to be less abrupt than that of gG�r� �see Fig. 1�. This
feature can be used in the simulations for increasing some-
what the degree of delocalization of the molecules at the
expense, however, of an increase in the kinetic energy within
the surroundings of the equilibrium positions 
where gP�r�
varies more rapidly than gG�r��. In Table I, we report the best
energies obtained in the optimization process of �NJ with
Gaussian and Padé functions for g1�r� as well as the optimal
set of parameters. As one can see, in both cases the lowest
energy obtained is −21.3�1� K. It is worthwhile noticing that
when the asymptotes of the Padé factors are widened �that is,
the value of cP is increased� or, equivalently, when the mol-
ecules are left to move more freely around the equilibrium
positions, the energy of the system increases. Given the
variational equivalency between gG�r� and gP�r�, we opt for
�NJ with Gaussian factors and optimal parameters bG
=3.45 Å and aG=0.67 Å−2 in our subsequent DMC calcu-
lations.

It is well known that �NJ is not symmetric under
the permutation of particles 
that is, �NJ�r1 ,r2 , . . . ,rN�
��NJ�r2 ,r1 , . . . ,rN��. This property is manifestly incorrect
for a system of indistinguishable bosons. Nevertheless, the
use of the Nosanow-Jastrow model is widely spread within
the field of microscopic calculations since it is assumed that
the effect of symmetrization on the total and partial energies
of quantum solids is practically negligible. In fact, we will
show in brief that this is also the case for two-dimensional

0.2

0.4

0.6

0.8

1

0 1 2 3 4

g 1
(r

)

r(Å)

FIG. 1. Optimized Gaussian and Padé functions �solid and
dashed line, respectively� for solid p-H2 at the density �
=0.060 Å−2. The decay of gP�r� to zero is smoother than that of
gG�r�, and in the region around the origin gP�r� is narrower.
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hydrogen. To this end, we have tested the quality of several
symmetrized trial wave functions in the variational study of
2D solid p-H2. As mentioned in Sec. I, our motivation for
this analysis is twofold: estimate the influence in the energy
of molecular quantum exchanges and chiefly study the pos-
sibility of its use as importance sampling in DMC to deter-
mine the possible existence of BEC and superfluidity.

We have studied three different symmetrized trial wave
functions. The first model consists in a permanent of mono-
particular functions containing the N! possible permutations
�P� of the N particles among the different lattice sites, ex-
pressed as

�JL
S1�r1,r2, . . . ,rN� = �J�

�P�
�
i=1

N

g1�ri − RPi� . �9�

Due to the algebraic difficulties arising in the implementa-
tion of permanents �contrarily to what occurs with determi-
nants�, the sampling of �JL

S1 must be divided into two dif-
ferent parts, one performed in the space of spatial configura-
tions and the other in the space of permutations.26 The ac-
ceptance probability for a proposed change in position of the
particle labeled i, ri→ri�, corresponds to

q = min�1,
�J�r��2g1�ri� − Ri�g1�ri� − RPi�
�J�r�2g1�ri − Ri�g1�ri − RPi�

� , �10�

where the subindex Pi can take any of the N possible lattice
sites. On the other side, the acceptance probability for a pro-
posed site permutation between the i and the j particles,
RPi↔RPj, is

Q2 = min�1,
g1�r j − RPi�g1�ri − RPj�
g1�r j − RPj�g1�ri − RPi�

� . �11�

Notice that permutations involving more than two particles
are not sampled since the acceptance level for swap permu-
tations is already extremely low.

The optimal results obtained with �JL
S1, using Gaussian and

Padé g1�r� functions, are reported in Table I. By comparing
the variational energies obtained with �NJ and �JL

S1, we show
that symmetrizing �NJ with the above prescription has not
appreciable effects on the total energy of p-H2. Nevertheless,
it must be said that one should not draw other conclusive
statements about the effects of a full symmetrization just
based on the approximation of the permanent by a reduced
sampling in the permutation space of type �11�. In fact, the
acceptance rate of permutations is so low �column Q2 in

Table I� that sampling �JL
S1 efficiently turns out to be quite

challenging.
The second model of symmetrized trial wave function �JL

S2

consists in a productory of sums in the form

�JL
S2�r1,r2, . . . ,rN� = �J�

i=1

N ��
j=1

N

g1�ri − R j�� . �12�

This trial wave function has been proposed very recently by
Zhai and Wu27 and has been suggested to be of possible
relevance for the study of the supersolid. In fact, �JL

S2 avoids
any explicit sampling in permutation space hence turns out to
be well suited for being used as importance sampling in
DMC simulations. However, as one can see in Table I the
best variational energy obtained with this model is sizably
larger than the ones obtained with �NJ and �JL

S1 in both
Gaussian and Padé cases. In fact, the variational energy ob-
tained with �JL

S2 is very similar to the one calculated with �J
for the liquid ��−17.4 K�. In doing the simulation with this
wave function it is observed that particles diffuse excessively
within the container giving place to glassylike configura-
tions; we have checked this feature by monitoring the radial
pair distribution function �see Fig. 2� and mean squared dis-
placement �which grows steadily with time�. The reason for
this excessive atomic diffusion is that the way in which the
one-body factor is symmetrized in �JL

S2 does not penalize

TABLE I. Optimal variational total energy per particle obtained at the density �=0.060 Å−2 with differ-
ent trial-wave-function models. Values appearing on the left �right� side of the table correspond to one-body
factors g1�r� adopted in the form gG�r� 
gP�r��.

bG

�Å�
aG

�Å−2�
E /N
�K�

Q2

�%�
bP

�Å�
aP

�Å−2�
cP

�Å−1�
E /N
�K�

Q2

�%�

�NJ 3.45 0.67 −21.3�1� 3.32 0.46 0.20 −21.3�1�
�JL

S1 3.45 0.67 −21.3�1� 4
10−3 3.32 0.46 0.20 −21.3�1� 6
10−2

�JL
S2 3.58 0.38 −17.9�1� 3.70 0.69 0.39 −17.9�1�

�JG
S3 3.45 0.61 −20.4�1�

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

g(
r)

r (Å)

S3
S2

FIG. 2. Variational radial pair distribution function g�r� of two-
dimensional molecular hydrogen at the density �=0.060 Å−2 ob-
tained with TWFs �JG

S2 and �JG
S3 .
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multiple occupation of a same lattice site. This feature will
be illustrated in short by means of a simple example involv-
ing two particles moving in one dimension. Moreover, if the
width of g1�r� is narrowed in order to avoid such unrealistic
molecular diffusion, the total energy of the system is wors-
ened because of the rapid increase in kinetic energy.

The third type of symmetrized trial wave function reads

�JG
S3 �r1,r2, . . . ,rN� = �J�

j=1

N ��
i=1

N

g1�ri − R j�� , �13�

and it is also straightforward to implement in DMC codes.
This type of trial wave function has been proposed very re-
cently by Cazorla et al.23 and has been used to set an upper
bound of 10−5 for the superfluid fraction of perfect crystal-
line bulk 4He at zero temperature. �JG

S3 and �JG
S2 look similar,

the difference being that the productory and summatory in
�JG

S3 run over sites and particles, respectively, while in �JG
S2 is

the other way around. However, �JG
S3 and �JG

S2 lead to com-
pletely different variational energies �see Table I�. The best
variational result obtained with �JG

S3 amounts to −20.4�1� K,
which is only 0.9 K larger than the one calculated with �NJ

or �JL
S1 but 2.5 K smaller than the one corresponding to �JG

S2 .
In this case, the radial pair distribution function and mean
squared displacement follow typical solidlike patterns �see
Fig. 2�.

Contrary to what occurs with �JG
S2 , the multiple occupation

of the same site is now penalized by the wave function and
hence crystal order is sustained. To the end of illustrating this
feature, which appears to be the main difference between �JG

S2

and �JG
S3 , we have analyzed the simple case of two particles

moving in a one-dimensional lattice. For the sake of simplic-
ity, we have assumed that the distance between the equilib-
rium positions of the particles is 1, the parameter entering the
Gaussian factors in Eqs. �9� and �13� is a=1 /2, in arbitrary
units �arb. units�, and that the Jastrow factor is switched off
��J=1�. The value of the squared wave function for �JG

S2 and
�JG

S3 , 
�sol
2, obtained by keeping fixed one of the particles in
the site located at the origin and then moving the other par-
ticle toward it, is plotted in Fig. 3 for the interval 0�x�1.
As one observes in there, the value of �JG

S2 at x=1 and 0 �that
is, each particle is placed over one site or both are at the
same position, respectively� is the same, whereas �JG

S3 �x=1�
��JG

S3 �x=0�. This effect is what we have previously referred
to as “penalized by the trial wave function.” It is also noted
that the value of �JG

S2 is maximum at half the way between 0
and 1, not so for �JG

S3 , hence �JG
S2 will always promote larger

diffusion of the molecules.

B. Diffusion Monte Carlo results

We have studied the energetic and structural properties of
p-H2 using the DMC method and �NJ �6� as trial wave func-
tion. We have verified that the DMC energy and diagonal
properties obtained with �NJ are statistically indistinguish-
able from the ones obtained using the symmetric wave func-
tion �JG

S3 �13�. The results presented in this section have been
obtained for a rectangular plane containing 90 particles with
periodic boundary conditions in the two spatial directions.

Internal parameters of the simulations, namely, the averaged
population of walkers and time step, are 250 and 5

10−4 K−1, respectively; these parameters have been ad-
justed in order to reduce any possible bias to the level of the
statistical uncertainty ��0.05 K�.

In Table II, we report the total ground-state energy per
particle, E /N, corresponding to 2D solid p-H2 at some den-
sities. The pure �unbiased� estimations of the potential, V /N,
and kinetic energies, T /N, are also quoted therein. The en-
ergy results have been corrected for the finite size of the
simulation plane by assuming the radial pair distribution
function g�r� to be one beyond the distance Rmax=L /2, with
L being the size of the plane. Assuming g�r��1 beyond Rmax
could seem a crude approximation for crystals since this
function shows periodic structure �see, for instance, Fig. 5�.
However, the periodic oscillations of g�r� around unity might
suggest that in average this approximation is essentially cor-
rect. In order to test the reliability of this finite-size correc-
tion we have calculated the total energy per particle in a
plane containing 90, 120, and 168 molecules at the density
�=0.0597 Å−2; we obtain E /N=−22.19�2�, −22.16�2�, and
−22.15�2� K, respectively, thus achievement of convergence
within the present statistical uncertainty is proved.

The energy per particle corresponding to liquid and solid
2D p-H2 at zero temperature is plotted in Fig. 4 as a function

0

0.25

0.5

0.75

1

1.25

0 0.2 0.4 0.6 0.8 1

|ψ
so

l|2
(a

rb
.u

ni
ts

)

x (arb. units)

<−−−

S3
S2

FIG. 3. Squared �JG
S2 and �JG

S3 �with �J=1� in the simple case of
two particles moving in one dimension and sites separated by one
arbitrary unity.

TABLE II. Ground-state energy E /N, potential energy V /N, and
kinetic energy T /N per particle of solid 2D p-H2. Potential and
kinetic energies are obtained with pure estimators.

�
�Å−2�

E /N
�K�

V /N
�K�

T /N
�K�

0.053 −19.42�2� −35.73�3� 16.30�3�
0.060 −22.21�2� −43.67�3� 21.46�3�
0.065 −23.27�2� −49.23�4� 25.96�4�
0.067 −23.42�2� −51.68�4� 28.26�4�
0.070 −23.19�2� −54.83�4� 31.64�4�
0.076 −21.30�2� −59.22�5� 37.92�5�
0.083 −14.23�2� −62.40�7� 48.17�7�
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of the density. The simulation of the metastable liquid phase
uses a Jastrow wave function �J �5� as importance sampling.
The lines in Fig. 4 correspond to polynomial fits to our re-
sults in the form

E/N = e��� = e0 + B�� − �0

�0
�2

+ C�� − �0

�0
�3

. �14�

The pressure, compressibility, and speed of sound �averaged
for all the directions� are then easily derived from Eq. �14�
through the expressions

P��� = �2�e���
��

, �15�

���� =
1

�
� ��

�P
�

T

, �16�

c��� = � 1

m��
�1/2

. �17�

The optimal values of the parameters for the solid phase are
e0=−23.453�3� K, �0=0.0673�2� Å−2, B=121�2� K, and
C=152�8� K, where e0 and �0 are the equilibrium energy
per particle and density, respectively. According to these
figures, the compressibility and speed of sound at the equi-
librium density are ���0�=0.0615�8� Å2 /K and c��0�
=998.6�1� m /s, the numbers quoted within parentheses be-
ing the statistical errors. The equation of state of the
liquid phase is also well described by the polynomial
form �14� with optimal parameters e0=−21.43�2� K, �0
=0.0633�3� Å−2, B=75�7� K, and C=69�9� K.

Another magnitude of interest in the study of bulk sys-
tems is the spinodal density �S. �S sets the limit for the sys-
tem to remain in a homogeneous phase since at this density
the compressibility grows to infinite �or equivalently, the
speed of sound becomes zero�; in case of going below this

point ��	�S� the system breaks down into clusters. Accord-
ing to our DMC calculations, this low-limit density amounts
to �S=0.0548�1� Å−2 in solid p-H2.

A glance at Fig. 4 shows that the solid phase is the stable
one overall the regime of positive pressures. Nevertheless, by
looking at our results one could suggest a first-order liquid-
solid phase transition occurring at negative pressures, where
the two equations of state cross each other. Needless to be
said that this possibility deserves detailed exploration since it
could provide a chance for superfluidity to be observed in a
quantum liquid different from helium. Aimed at this, we
have simulated 2D liquid p-H2 down to densities of
0.039 Å−2 
the spinodal density of the liquid is �S
=0.0519�1� Å−2� and searched for that transition by means
of the Maxwell double-tangent construction. Our results
show that a liquid-solid transition is not possible within the
range set by the spinodal densities, and thus the possibility of
liquid p-H2 in two dimensions must be rejected.

Our results for the equation of state of p-H2 can be com-
pared with two previous path-integral Monte Carlo �PIMC�
studies carried out on the same system. In Ref. 28, Gordillo
and Ceperley obtained �=0.064 Å−2 for the equilibrium
density of 2D solid p-H2 at T=1 K; the authors of that work
reported a figure with the energy per particle as a function of
the density, and the minimum of the curve is located at �
−22.0 K. A more systematic analysis of the same system
was performed later on by Boninsegni.29 In that work, the
total energy per particle and chemical potential are calculated
at several densities and within the temperature range T
=1–8 K. Subsequently, an extrapolation of the low tempera-
ture results to absolute zero was performed, leading to
�0

PIMC=0.0668�5� Å−2, e0
PIMC=−23.25�5� K, and �S

PIMC

=0.0585�10� Å−2. We note that the agreement between those
zero-temperature extrapolated PIMC values and our DMC
results is fairly good, especially in the case of the equilib-
rium density �0.

We have analyzed the structure of the 2D solid by calcu-
lating the radial pair distribution function g�r�,

g�r� =
N − 1

�

� 

�r1,r1 + r, . . . ,rN�
2dr1dr3 . . . drN

� 

�r1,r2, . . . ,rN�
2dr1 . . . drN

,

�18�

and Lindemann’s ratio �H2
,

� =
1

a
�� 1

N
�
i=1

N

�ri − Ri�2� =
	u2�1/2

a
, �19�

where a is the distance between nearest neighbors in the
perfect crystalline configuration. In Fig. 5, we plot g�r� at the
density 0.068 Å−2 which, as it is expected in crystals, exhib-
its a pattern of periodic order. At low temperatures, Linde-
mann’s ratio � around the equilibrium density tends to zero
in classical solids while in quantum crystals it is finite due to
the zero-point motion of particles; hence this quantity is re-
garded as a good quantum indicator. Furthermore, Linde-

−24

−23

−22

−21

−20

0.055 0.06 0.065 0.07 0.075

E
/N

(K
)

ρ(Å−2)

FIG. 4. Total ground-state energy per particle of liquid �dotted
line� and solid �dashed line� 2D p-H2 at zero temperature. The lines
correspond to polynomial fits of our results �empty and filled
circles�; the statistical error bars are smaller than the symbol size.
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mann’s ratio �or equivalently, the mean squared displace-
ment� is related to the Debye-Waller factor MQ, which
describes the attenuation of the emergent radiation in coher-
ent scattering experiments according to the formula I�Q ,T�
�e�−2MQ� 
where I�Q ,T� is the intensity of the outgoing ra-
diation scattered by the target and Q is the modulus of the
transfer wave vector�. By means of a cumulant expansion,
the Debye-Waller factor can be expressed as

2MQ = 	uQ
2 �Q2 −

1

12
�	uQ

4 � − 3	uQ
2 �2�Q4 + O�Q6� , �20�

where 	uQ
2 � is the mean squared displacement along the di-

rection Q̂. It is easy to see that when the distribution of
particles around the equilibrium positions is well described
by a Gaussian function, the quantity within parentheses in
the second right term of Eq. �20�, known as kurtosis �Q,
vanishes. In such a case, the Debye-Waller factor reduces to
the simple formula 2MQ= 	uQ

2 �Q2. In Table III, we report
Lindemann’s ratio, kurtosis, and mean squared displacement
of two-dimensional p-H2 at different densities. We have cal-
culated 	uQ

2 � and �Q along two orthogonal directions and not
found appreciable differences in the results. Moreover, the

kurtosis is null in all the studied cases. Consequently, we
may conclude that the distribution of hydrogen molecules
around the equilibrium positions is isotropic and can be ac-
curately reproduced by a Gaussian, contrary to what is found
to occur in 4He.30 Regarding the value of �, it can be said
that solid H2 is less quantum than 4He since �H2

�0.18 at �0

whereas in solid helium �He�0.24 near melting.7 Also it is
worth noticing that the trend of �H2

is to increase with de-
creasing density; therefore quantum exchange effects in the
crystal would become of greater relevance at small densities.

IV. MOLECULAR ORTHO-DEUTERIUM

The ground-state properties of o-D2 �with zero total angu-
lar momentum� have also been studied using the DMC
method and the same radial pair potential
�Silvera-Goldman12� as in p-H2. The larger mass of D2
makes one to expect that two-dimensional bulk D2 is solid at
zero temperature, so in this case we have restricted our study
to the solid phase.

In our simulations, the equilibrium positions of the o-D2
molecules are arranged according to a triangular lattice and
the particles are assumed pointlike. In this case, we use the
trial wave function,

�NJ� �r1,r2, . . . ,rN� = �
i	j

N

e−�1/2��b/rij�
c�

i

N

e−�a/2��
ri − Ri
�
2
,

�21�

which differs slightly from �NJ in Eq. �6� �now the pair-
correlation factors f2 depend on the extra variational param-
eter c�. The variational parameters in Eq. �21� have been
optimized using VMC; the best values are b=3.32 Å, c=7,
and a=0.67 Å−2. All the DMC simulations have been per-
formed in a rectangular plane containing 120 particles and
applying periodic boundary conditions. The target averaged
population of walkers, nw, is 250 and the time step, ��, is
5
10−4 K−1. Finite size effects have been corrected with
the same approach than used for hydrogen �see Sec. III B�.

In Fig. 6, we plot the total ground-state energy per o-D2
molecule as a function of the density; the solid line repre-
sents the best fit to our data following the polynomial func-
tion expressed in Eq. �14�. The best values of the parameters
are B=241�3� K, C=324�10� K, e0=−42.305�5� K, and
�0=0.0785�2� Å−2, which lead to a spinodal density �S
=0.0641�2� Å−2. By comparing with p-H2, we show that
o-D2 is denser at equilibrium and appreciably more bounded
�the total energy decreases substantially�. The heavier mass
of the o-D2 molecules makes the solid to reduce its kinetic
energy and mean squared displacement at any density �see
Tables II–V�, thus allowing the system to increase its equi-
librium density in order to take advantage of the attractive
interparticle interaction.

Concerning the structural properties of 2D solid o-D2, we
have calculated the radial pair distribution function at the
equilibrium density �see Fig. 5� and Lindemann’s ratio and
kurtosis at different points �see Table V�. As it is shown in
Fig. 5, the peaks of the radial pair distribution function of 2D
o-D2 are sharper and somewhat closer than in molecular hy-

0
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1

1.5

2

2.5

0 4 8 12 16

g(
r)

r(Å)

FIG. 5. Radial pair distribution functions of 2D solid o-D2 at the
equilibrium density �0=0.078 Å−2 �dashed line� and of p-H2 at the
density 0.068 Å−2 �solid line�.

TABLE III. Lindemann’s ratio �H2
, kurtosis �, and mean

squared displacement 	u2� of 2D solid p-H2 at different densities
close to equilibrium �pure estimations�.

�
�Å−2�

�H2
��10� ��01� 	u2�

�Å2�

0.058 0.212�1� 0.00�2� 0.00�2� 0.19�1�
0.060 0.197�1� 0.02�2� 0.00�2� 0.15�1�
0.065 0.183�1� 0.02�2� 0.02�3� 0.12�1�
0.067 0.178�1� −0.01�1� −0.02�2� 0.11�1�
0.070 0.170�1� −0.02�1� 0.00�2� 0.09�1�
0.076 0.158�1� 0.00�2� 0.01�1� 0.07�1�
0.083 0.146�1� 0.01�2� 0.01�1� 0.06�1�
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drogen at equilibrium since the density and degree of local-
ization of the particles are larger in the first case. This state-
ment is also corroborated by the results contained in Table V,
where Lindemann’s ratio is invariably some tenths smaller
than in p-H2 at the same density. As a matter of comparison,
Lindemann’s ratio of o-D2 at equilibrium is about 1.3 times
smaller than that of p-H2 and 1.7 than in two-dimensional
4He. Furthermore, as it could be expected from our previous
study of 2D p-H2 �Table II�, the kurtosis in two-dimensional
o-D2 is practically null in both the two orthogonal directions
for which it has been calculated.

V. ONE-BODY DENSITY MATRIX AND OFF-DIAGONAL
LONG-RANGE ORDER

A fundamental function in the study of quantum systems
is the one-body density matrix �1�r ,r��, defined as

�1�r,r�� = 	�0
�̂†�r��̂�r��
�0� , �22�

where �̂�r�� and �̂†�r� are, respectively, the field operators
which destroy a particle from position r� and create another
at position r and �0 is the ground-state wave function. In
particular, a finite value for limr→� �1�r� proves the exis-

tence of off-diagonal long-range order �ODLRO� in the sys-
tem, the result being the condensate fraction n0. In quantum
Monte Carlo, the one-body density matrix can be estimated
by averaging the coordinate operator �T�r1
+r ,r2 , . . . ,rN� /�T�r1 ,r2 , . . . ,rN�; here, we use extrapolated
estimators for �1 since the pure estimation relying on for-
ward walking is only applicable to diagonal operators. In
order to get consistent results we have required that the two
extrapolated estimators of the same accuracy, i.e., �1�r�
=2�1

mix�r�−�1
var�r� and �1�r�= 
�1

mix�r��2 /�1
var�r� �where mix

means obtained with DMC and var with VMC�, coincide
within the present statistical uncertainty.

In Fig. 7, we compare DMC results for the one-body den-
sity matrix ��=0.060 Å−2� obtained within the distance
range 0	r	5.0 Å and with both �NJ �unsymmetrized� and
�JG

S3 �symmetrized� trial wave functions. As can be observed,
the series of points obtained with both TWFs is compatible
in the full depicted range. In the same graph, we also enclose
the Gaussian curve G�r�=e−br2

which best fits to the result
obtained with �NJ; we find that the best value of the param-
eter b is 0.400�6� Å−2. In order to test the quality of this fit
�which in the reduced chi-squared test leads to the value

TABLE V. Lindemann’s ratio �D2
and kurtosis � of two-

dimensional o-D2 at different densities near the equilibrium.

�
�Å−2�

�D2
��10� ��01�

0.053 0.204�1� 0.00�1� −0.06�2�
0.060 0.187�1� 0.01�1� 0.00�1�
0.069 0.160�1� 0.00�2� −0.01�1�
0.073 0.149�1� −0.01�1� 0.01�1�
0.078 0.139�1� 0.00�1� 0.01�1�
0.080 0.135�1� −0.02�1� 0.00�1�
0.088 0.124�1� 0.00�1� −0.03�1�
0.094 0.117�1� −0.02�1� 0.02�1�
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FIG. 7. One-body density matrix of p-H2 �1�r� obtained using
as importance sampling �NJ and �JG

S3 at the density �=0.060 Å−2.
The solid line corresponds to the Gaussian function which best fits
to the Nosanow-Jastrow result.
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FIG. 6. Ground-state energy per particle of 2D solid o-D2 �solid
line and filled circles� and 2D solid p-H2 �dotted line and empty
triangles� which is shown for comparison.

TABLE IV. Ground-state total and pure potential and kinetic
energies per particle of 2D o-D2 at several densities.

�
�Å−2�

E /N
�K�

V /N
�K�

T /N
�K�

0.046 −22.40�2� −29.84�3� 7.44�3�
0.053 −27.97�1� −37.70�3� 9.73�3�
0.060 −33.57�1� −46.38�4� 12.81�4�
0.069 −39.41�1� −57.52�3� 18.11�3�
0.076 −42.12�1� −66.46�6� 24.34�6�
0.084 −40.80�1� −72.59�6� 31.79�6�
0.094 −29.32�2� −73.18�8� 43.86�8�
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1.59�, we have calculated the atomic kinetic energy of two-
dimensional p-H2 through the formula

T/N = − � �2

2mH2

�2�1�r��
r=0

, �23�

but assuming G�r� instead of �1�r�. In fact, it may be shown
that Eq. �23� derives from the second moment of the momen-
tum distribution n�k�,

T/N =
�2

2mH2

1

�2��2�
� dkk2n�k� . �24�

Proceeding in this way, we obtain T /N=19.40�30� K which
does not agree satisfactorily with the corresponding pure
�mixed� estimation 21.46�3� 
20.75�2�� K. Very interestingly,
Withers and Glyde31 recently showed by means of simple
models that anharmonic and/or particle-exchange effects in
quantum solids may cause the momentum distribution n�k�
or equivalently �1�r� to deviate significantly from a Gaussian
function. Therefore, on account of our variational results re-
ported in Sec. III A which show that molecule exchanges are
likely to occur at very low rate, it may be suggested that
two-dimensional hydrogen presents some degree of anhar-
monicity.

In Fig. 8 �a�, we show DMC results similar to those en-
closed in Fig. 7 but for larger distances and expressed in
logarithmic scale in order to obtain the asymptote of �1. As
one observes, the value of limr→� �1 in the unsymmetrized
case tends obviously to zero while for �JG

S3 it amounts to a
small but finite value n0=6�1�
10−4. In the same figure �b�,
we compare �1�r� at several densities and only for the sym-
metric wave function; we obtain n0=2�1�
10−4 and 8�1�

10−3 at the density 0.067 and 0.056 Å−2, respectively. At
the equilibrium density, we have performed a further test in
order to assess any possible bias in our estimation of n0. The
test consists in computing �1�r� with trial wave function �JG

S3

but using Padé functions gP instead of Gaussian functions gG
as localizing factors g1 
see Eq. �13��. We have proceeded so
and obtained n0=7�2�
10−4 to be compared with 2�1�

10−4. As one can see, both results are fairly compatible
though not identical. In view of this outcome, it can be ar-
gued that despite the value of n0 that we provide cannot be
considered completely free of bias the corresponding order
of magnitude is essentially correct.

Apart from the fact that we obtain a small but finite con-
densate fraction for the ground state of solid p-H2 in two
dimensions, we note that the value of n0 raises very abruptly
in moving from equilibrium to densities close to the spinodal
point �where P	0�. In a very recent work, we have analyzed
the superfluid nature of solid 4He at zero temperature by
means of �JG

S3 .23 In that work, we showed that the superfluid
fraction of bulk solid 4He lies below 1
10−5, whereas a
clear superfluid signal of �s /�=3.2�1�
10−3 appears in the
presence of 1% of vacancies. In the case of vacancies, we
found that the condensate fraction increased by roughly a
factor of 2 with respect to that of the perfect-crystal configu-
ration. According to this previous result, a significant in-
crease in n0 in our simulations may be identified to the ap-
pearance of superfluidity in the system. Therefore, two-

dimensional solid hydrogen is likely to become superfluid at
very low coverages and temperatures. In fact, the superfluid
density of a bosonic system can be calculated with DMC in
an unbiased way by extending the winding-number tech-
nique, originally developed for PIMC calculations, to zero
temperature.32 Explicitly,

�s

�
= lim

�→�
��Ds���

�
� , �25�

where �=N /4D0 with D0=�2 /2m and Ds���= 	
RCM���
−RCM�0��2� with RCM as the center of mass of the particles
in the simulation box. Motivated by our results for n0, we
have carried out a series of simulations for estimating �s /� in
solid p-H2; we find that at equilibrium �s /� is null �or, more
precisely, �s /�	10−5 which corresponds to our accuracy
threshold�, while at �=0.060 and 0.056 Å−2 �s /� amounts to
0.28�1�% and 3.8�1�%, respectively.

In order to ensure that the significant raise of n0 and ap-
pearance of superfluidity observed in our simulations are not
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FIG. 8. �a� One-body density matrix of p-H2 at density �
=0.060 Å−2 obtained using importance sampling with the
Nosanow-Jastrow and �JG

S3 trial wave functions. �b� One-body den-
sity matrix of p-H2 obtained with the �JG

S3 trial wave function at
several densities. Densities are in units of Å−2.
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due to partial melting of H2, we have calculated the corre-
sponding radial pair distribution function at the density
0.056 Å−2. In Fig. 9�a�, we report g�r� for hydrogen and
compare it with the one obtained for two-dimensional 4He
above its freezing point. Clearly, a typical solid pattern
emerges for H2. Moreover, in 9�b� we also plot the structure
factor S�k� for molecular hydrogen at the equilibrium density
�0=0.067 Å−2 and �=0.056 Å−2; in both cases marked
peaks emerge at the reciprocal-lattice vectors. Therefore, the
significant variation in n0 and appearance of superfluid be-
havior with decreasing density are not caused by a priori
guessed instabilities in the crystal.

VI. DISCUSSION AND CONCLUSIONS

To summarize, in this work we have studied two-
dimensional p-H2 and o-D2 at zero-temperature and low

pressures, with the diffusion Monte Carlo method and the
Silvera-Goldman semiempirical pair interaction.12 We have
assessed several energetic and structural properties of both
systems, such as the total and kinetic energy per particle,
radial pair distribution function, and Lindemann’s ratio, and
quoted so isotopic quantum effects in hydrogen. Our results
show that no stable liquid phase exists and therefore reduc-
ing one dimension with respect to bulk it is not enough to get
the so longly searched superfluid phase of H2.

Interestingly, Wiechert et al.19 reported very recently on
an experiment on molecular ortho-deuterium coadsorbed on
graphite preplated by a layer of Kr up to temperatures of
�1.5 K. The authors of this work claim evidence for the
existence of a reentrant D2 liquid at very low temperatures
based on their heat capacity and neutron-diffraction measure-
ments. The system explored by Wiechert et al.19 can be fairly
modeled by a monolayer. However, on account of our results
for H2, the possibility of pure two-dimensional liquid deute-
rium at zero temperature must be ruled out. On the expect-
ance of new and more explanatory experiments, we may
point that, assuming that thermal effects are practically neg-
ligible, the role of the interactions between the deuterium
molecules and the atoms of the substrate is the one of rel-
evance. Certainly, Turnbull and Boninsegni34 already ad-
dressed recent work on this direction by means of the PIMC
method and simple interaction models.33 Further improve-
ment on the modeling of coadsorbed systems, putting special
emphasis on the description of the interactions and the effect
of corrugation with the substrate, may open new and chal-
lenging venues for the realization of superfluidity in p-H2

and o-D2 systems.35

At the variational level, we have analyzed the quality of
three different symmetrized trial wave functions based on the
Nosanow-Jastrow model in describing 2D solid molecular
hydrogen. We have shown that the recently proposed sym-
metrized wave function used to describe the supersolid also
characterizes solid hydrogen satisfactorily. By using that
wave function, we have studied the behavior of the one-body
density matrix of solid p-H2 with density and predicted that
the system becomes superfluid at very dilute densities �where
P	0�. At present, work aimed at understanding the origins
of the predicted superfluid behavior of solid hydrogen at
negative pressures is in progress.

ACKNOWLEDGMENTS

We acknowledge financial support from DGI �Spain� un-
der Grant No. FIS2005-04181 and Generalitat de Catalunya
under Grant No. 2005GR-00779.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16 18 20

g(
r)

r (Å)

H2, ρ = 0.056
4He, ρ = 0.079

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3

S
(k

)

k (Å−1)

ρ = 0.067
ρ = 0.056

(a)

(b)

FIG. 9. �a� Radial pair distribution function of two-dimensional
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